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Abstract

A chain event graph (CEG) is a graphical model that is constructed by identifying the

probabilistic symmetries within the tree-based description of a process. CEGs generalise

Bayesian networks (BNs) by representing context-specific conditional independencies within

their graph topologies. The CEG literature, through the stratified CEG class, has demon-

strated efficacy over BNs in modelling processes with contextual independence structures.

CEGs are also suited to modelling ‘asymmetric’ processes with event spaces that

do not admit a product space structure. While such processes are common in many do-

mains, they are not easily and effectively modelled by BNs and other graphical models with

variable-based topologies. This thesis presents the first exposition of the theory and appli-

cations of the more general non-stratified CEG class that models asymmetric processes. We

demonstrate, through modelling of an asymmetric public health intervention, that the CEG

provides a superior representation than the BN in non-product space settings.

We then present a novel dynamic variant of CEGs called the continuous time dy-

namic CEG which has an approximate semi-Markov process representation. We show that

this dynamic class generalises and vastly expands the existing subclass of extended dynamic

CEGs, first studied in Barclay et al. (2015). We develop semantics unique to this class and

propose a dynamic inference scheme for it together with a novel continuous time probabil-

ity propagation algorithm. In doing this, we are able to utilise any observed information

about the temporal evolution of the process to update our beliefs.

Finally, we demonstrate by modelling the evolution of criminal collaborations how

the Bayesian paradigm allows us to combine a dynamic CEG model with other disparate

models – after due consideration of the independencies between these models – where each

model is a component describing a distinct aspect of a complex longitudinal process.
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Chapter 1

Introduction

1.1 Motivation

A probabilistic graphical model (PGM) is composed of a statistical model and a graph rep-

resenting the independence relationships between the defining random variables or events

of the underlying statistical model. In this way, PGMs bring together two very different

branches of mathematics: probability theory and graph theory. The graph of a PGM pro-

vides a visually compelling and intuitively intelligible representation of the probabilistic

associations encoded within its statistical model. The fact that the essence of these graphs

can be typically understood by even those with very little mathematical and statistical train-

ing makes PGMs a very useful tool for communication between a statistician and a variety

of related vested parties such as the domain experts informing the modelling of the process,

other researchers with diverse educational backgrounds, and other stakeholders. Addition-

ally, for the statistician – depending on the family of PGMs chosen and the methodology

developed for it – it may be possible to gain a deeper understanding of the process being

modelled by simply examining the topology of its graph without making any reference to

the parameters of the underlying statistical model.

Within the world of graphical models, the family of Bayesian networks (BNs) (see

e.g. Dean and Kanazawa (1989), Cowell et al. (1999), Nodelman et al. (2002), Pearl (2009),

and Korb and Nicholson (2010)) have thus far enjoyed tremendous popularity. They have

been applied to a wide range of domains including medicine, public health, financial mar-

kets, risk analysis, reliability engineering, ecology, meteorology, agriculture, policing, cy-

ber security and forensic analysis.

Notwithstanding the great success of BNs, they do have some shortcomings. In

particular, BNs are unable to fully describe asymmetric processes, i.e. processes with event

spaces that do not admit a product space structure. We first clarify, with some examples,
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the type of asymmetries that can exist within a process. Within this thesis, we consider the

following two main types of asymmetries:

• Asymmetric Independence: This refers to the presence of context-specific condi-

tional independencies which are independence relationships that hold only for certain

values of the conditioning variables, i.e. X y Y |Z = z1 but X 6y Y |Z = z2 for some

variables X,Y and Z where y stands for probabilistic independence and the vertical

bar shows conditioning variables on the right.

• Asymmetric Structure: This refers to the presence of structural missing values, i.e.

values that are missing which have no underlying meaningful value, and structural

zeros, i.e. observations of a zero frequency for a category of a categorical variable

where a non-zero observation is logically restricted.

The second type of asymmetry results in a process whose event space does not admit a

product space structure. In this thesis, when we refer to a process being asymmetric, we are

referring to the presence of asymmetric structures within the process. To avoid ambiguity,

we refer to asymmetric independencies as context-specific or contextual conditional inde-

pendencies. Asymmetric processes may or may not also exhibit context-specific conditional

independencies.

Example 1.1 (Infection example). Here we consider a simplified topical example. We con-

sider infection in individuals by one of two strains of a certain virus circulating in the

population. Infected individuals can get one of two available treatments. The outcome of

a treatment, in most cases, is “recovery” and in others is “death”. Consider the following

cases:

Case 1: Given that an individual received treatment 1, their probability of recovery

is independent of the strain of the virus by which they were infected. We may represent

this information by colouring vertices s3 and s5 with the same colour in Figure 1.1(a). A

similar relationship holds for an individual who received treatment 2 which we represent

by colouring vertices s4 and s6 with the same colour in Figure 1.1(a). These two statements

can be described succinctly by stating that given the treatment received by an individual,

their probability of recovery is independent of the strain of the virus by which they were

infected. This process, described by the event tree in Figure 1.1(a), is symmetric in its

structure and independence relationships.

Case 2: The probability of recovery is independent of the strain of the virus an

individual was infected by, given that they received treatment 1 but not if they received

treatment 2. Here, the conditional independence relationship holds when the treatment

administered to the patient was treatment 1 but not when it was treatment 2. This is an
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instance of context-specific conditional independence. This process, described by the event

tree in Figure 1.1(b), is symmetric in its structure but not in its independence relationships.

Case 3: Suppose that research showed that the available treatments are ineffective

against an infection caused by strain 2 of the virus. Due to this, suppose that no treat-

ment is administered to individuals infected by strain 2. Thus, the variable of treatment

does not meaningfully apply to individuals infected by strain 2 of the virus and hence, the

treatment variable is structurally missing for these individuals. This process is structurally

asymmetric and can be described by the event tree in Figure 1.1(c).

Case 4: Suppose instead that research showed that treatment 1 is effective against

strain 2 of the virus but treatment 1 is ineffective against it. In this case, all those infected

with strain 2 of the virus always receive treatment 1. Thus, irrespective of our sample

size, we will never observe any individuals who have been infected by strain 2 of the virus

and have received treatment 2. Thus, recording zero individuals who have been infected

by strain 2 of the virus and have received treatment 2 is a structural zero. Here the state

space of the treatment variable for individuals infected by strain 2 is {“Treatment 1”}. This

process is structurally asymmetric and can be described by the event tree in Figure 1.1(d).

While the conditional independencies encoded with the statistical model of a BN

can be inferred by simply interrogating the topology of its graph using the d-separation the-

orem (e.g. Verma and Pearl (1988), Geiger et al. (1990), and Cowell et al. (1999)), BNs in

their unmodified form are unable to express within their graphs context-specific conditional

independencies. Uncovering these context-specific conditional independencies requires se-

rious modifications (typically involving trees in some form) to the standard representation

and/or inferential process of a BN, see e.g. Boutilier et al. (1996), N. L. Zhang and Poole

(1999), and Jabbari et al. (2018). These modifications are discussed in greater detail in

Chapter 2. On the other hand, BNs cannot graphically represent structural asymmetries.

They are primarily stymied in this respect as they force the process description on a set of

variables that are defined a priori. Through its model construction with these pre-defined

variables, a BN model assumes a symmetric event space that conforms to a product space

structure. While structural zeros are hidden away within the conditional probability tables

of a BN, there exists no way to accommodate structural missing values within the underly-

ing model of a BN.

With these limitations in mind, a new family of PGMs called chain event graphs

(CEGs) was introduced in Smith and Anderson (2008), developed specifically for processes

with asymmetric event spaces and context-specific independencies. The construction of a

CEG begins with the elicitation of an event tree describing the process being modelled.

Event trees, while being a naturally intuitive framework for describing a process through

a sequential unfolding of events (Shafer, 1996), can quickly get unwieldy as the process
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(a) (b)

(c) (d)

Figure 1.1: Event trees for the infection process in Example 1.1 as described by (a) case 1,
(b) case 2, (c) case 3, and (d) case 4.
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being modelled gets larger. A CEG provides a more compact representation of an event

tree by exploiting the probabilistic symmetries existing within it. Through their event tree

construction, CEGs are able to graphically represent context-specific conditional indepen-

dencies as well as the atoms of an asymmetric event space.

It has been shown, for example in Smith and Anderson (2008), that CEGs contain

the class of discrete BNs as a special case. Over the last decade, several methodological

developments have been made for the CEG family: model selection algorithms (Freeman

& Smith, 2011a; Silander & Leong, 2013; Cowell & Smith, 2014; Collazo & Smith, 2016),

a probability propagation algorithm (Thwaites et al., 2008), a d-separation theorem (Wilk-

erson, 2020), analysis of missingness through CEGs (Barclay et al., 2014), causal inference

(Thwaites et al., 2010; Thwaites, 2013), diagnostics in a CEG (Wilkerson, 2020) and devel-

opment of dynamic variants of CEGs (Barclay et al., 2015; Collazo, 2017). Applications of

CEGs in health studies (Barclay et al., 2013, 2014), educational studies (Freeman & Smith,

2011b) and radicalisation (Collazo, 2017) have also been explored. Chapter 3 formally

presents the CEG family and reviews some of the above methodological developments.

As noted above, unlike BNs, CEGs are capable of handling processes with asym-

metric event spaces and can graphically represent context-specific conditional independen-

cies. CEGs dealing with processes with symmetric event spaces are called stratified CEGs,

whereas those dealing with processes with asymmetric event spaces are called non-stratified

CEGs. In order to demonstrate the efficacy of CEGs over BNs in expressing context-specific

independencies, the primary focus of the CEG research thus far has been on developing

methodologies and exploring applications for the stratified class. This is because the strat-

ified class, similar to a BN, models processes with event spaces that admit a product space

structure. Surprisingly little has been said about what issues result in a process having

an asymmetric event space. Thus far, the applicability of existing CEG methodologies to

the non-stratified class has not been studied, nor has there been an application with a non-

stratified CEG that has systematically analysed a real-world process.

We noted above that some dynamic variants of CEGs have been developed. With

the exception of the extended dynamic CEG (Barclay et al., 2015), the other dynamic CEGs

(DCEGs) (Barclay et al., 2015; Collazo, 2017) have been developed for longitudinal pro-

cesses evolving in discrete time. Further, these discrete time DCEGs have been developed

for processes satisfying the Markov property. Hence, information about the time spent by

an individual at the various states depicted by such a DCEG do not offer any discriminatory

information about the process, and so, the temporal evolution of these processes is typically

disregarded. On the other hand, extended DCEGs take into account such conditional hold-

ing times at the various states depending on the state occupied next. By explicitly account-

ing for the holding times, we are able to model longitudinal processes where observations
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are recorded as the events occur rather than at regular time intervals.

However, on further inspection, we find that the extended DCEGs represent a spe-

cial subclass of the general class of DCEGs evolving in continuous time. In particular,

extended DCEGs do not directly investigate when the conditional holding times associated

with different transitions follow the same distribution. Instead, they assume that the con-

ditional holding time distributions for two states are the same whenever the conditional

transition probabilities out of the two states are equivalent. Further, extended DCEGs are

described as an extension of discrete time DCEGs and hence, they do not have the necessary

range of semantics to appropriately describe a process evolving in continuous time.

Finally, we note that the applications of CEGs (DCEGs) considered thus far are

those where the whole process can be described by the CEG (DCEG). Within the Bayesian

paradigm, we are able to systematically combine together disparate models – after due con-

sideration of the independencies between these models – where each model is a component

of a larger composite model describing a distinct aspect of a complex longitudinal process.

Thus a CEG (DCEG) can be one such model within a larger modelling framework.

With the above points in mind, this thesis aims to address the following research

questions:

1. What are the underlying issues that result in a process having an asymmetric event

space? Are there any differences in constructing a non-stratified CEG from its event

tree? Are the model selection methodologies developed for stratified CEGs also ap-

plicable to the non-stratified class? (Chapter 4)

2. How can we define a class of continuous time DCEGs with the necessary semantics

such that it can describe a longitudinal complex process, evolving in continuous time,

with its different components evolving at different rates? How does inference work

in this class? How can we address model selection within this class as it contains a

very large search space? (Chapter 5)

3. How can a continuous time DCEG be combined with other models, each describing

a distinct part of a complex process? Under what conditions can we combine these

models such that we can still estimate the parameters of each model independently?

(Chapter 6)

1.2 Thesis Outline

The rest of this thesis is organised as follows.

In Chapter 2 we begin by reviewing the relevant preliminary and graph theoretical

concepts. We then review BNs, their two important dynamic variants: discrete time dy-
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namic BNs and continuous time BNs, and discuss the limitations of the BN family with ref-

erence to modelling processes with context-specific conditional independencies and asym-

metric event spaces. We conclude this chapter with a discussion of alternative PGMs for

asymmetric processes.

In Chapter 3 we review CEGs. This review is primarily based on the stratified

class of CEGs as the methodologies developed thus far have generally been customised to

this class. This review considers conjugate updating of the parameters of a CEG model,

model selection algorithms for the stratified class, and the CEG probability propagation

algorithm. We conclude this chapter by discussing the relevant existing dynamic variants

of CEGs, namely discrete time DCEGs and the continuous time extended DCEGs.

Chapter 4 begins with a motivation and introduction to what type of issues lead to

processes having asymmetric event spaces, and thereon, discusses the real-world relevance

of the non-stratified CEG class. We prove that a CEG is uniquely defined by its staged tree

and present a backward iterative construction algorithm with an optimal stopping criterion

to transform any staged tree (stratified or non-stratified) into a CEG – which has been miss-

ing from the existing literature. We next describe how the model selection methodologies

developed for stratified CEGs can be extended to the non-stratified class, and present an ap-

plication of the non-stratified CEG class on an intervention to reduced falls-related injuries

among the elderly.

Chapter 5 introduces the general class of DCEGs evolving in continuous time called

the continuous time DCEG (CT-DCEG), of which the extended DCEGs are a special sub-

class. Along with introducing new semantics customised to this continuous time setting, we

demonstrate how time-invariant covariates (e.g. age, socioeconomic background, chronic

health conditions) which do not have any associated holding times can be incorporated

within a CT-DCEG. We show that all CT-DCEGs enjoy an alternative, possibly approxi-

mate, representation as a semi-Markov process. Within this chapter, we also explore con-

jugate learning, model selection and a dynamic propagation scheme for this class. We then

present an application of the CT-DCEG on a dynamic extension of the falls intervention.

Chapter 6 illustrates how a member of the CEG family can be combined with other

models within a wider modelling framework to describe a complex multi-faceted process.

We model the evolution of criminal collaborations among suspected criminals. This crim-

inal collaboration model consists of two parts. The first is an existing lone criminal model

introduced in Smith and Shenvi (2018) and developed in (Bunnin & Smith, 2019). This

model utilises a new subclass of CT-DCEGs called the reduced DCEG which we formally

introduce for the first time in this thesis. We then review the lone criminal model. Next, we

introduce the second part of the criminal collaboration model which is a dynamic weighted

network model. Finally, we demonstrate how these two parts can be combined together, and
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illustrate how this composite model can be used to create bespoke cell-level threat scores

that indicate the imminence of the threat posed by a known or suspected criminal cell.

To our knowledge this is the first example where a DCEG/CEG is used as one of several

components within a composite model.

We conclude with Chapter 7 which presents a summary of the contributions of this

thesis, and a discussion of ongoing and future work.
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Chapter 2

Graphical Models and Other
Preliminaries

We begin this chapter by providing a broad overview of PGMs in Section 2.1, building

on the discussion started in Chapter 1. In Section 2.2 we define some preliminary graph

theoretic concepts, and discuss the concepts of independence and conditional independence.

Since this thesis focuses on the CEG family whose graphs are directed, it is of

relevance to compare this family to the competing family of BNs which are currently the

most popular directed graphical models within the literature. We present a brief review of

BNs in Section 2.3. Within this section, we also review the relevant dynamic variants of

BNs, namely the dynamic BN and continuous time BN. We then discuss the limitations

of BNs as well as the approaches proposed in the literature to overcome them. In Section

2.4 we present a simple and non-technical description of CEGs. Here we illustrate through

an example how CEGs easily overcome the main limitation of BNs due to their tree-based

construction. This section is placed here to enable the reader to compare the CEG – through

the example – to the BN framework. A detailed technical review of CEGs is deferred

to Chapter 3. Finally, in Section 2.5, we present two directed graphical models that are

not associated with the BN family but can be considered as alternatives to the CEG for

modelling asymmetric processes.

2.1 An Overview of PGMs

Recall that a PGM is a statistical model with a graphical representation that facilitates in-

teraction between statisticians, domain experts and decision makers. Graphs have a long

history of being used to describe statistical models, which began as early as 1921 with the

introduction of path analysis by geneticist Sewall Wright (Sewall, 1921). Pearl (2009) states
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that the role of graphs in statistical models is given as follows:

1. to provide an intuitive way of expressing substantive assumptions about a process;

2. to facilitate a compact representation of joint probability distributions;

3. to provide a way to perform efficient inference.

Thus, the graph of a PGM not only provides a representational advantage by being a

visual interface but it also compactly represents the dependencies among its variables. Fur-

ther, Pearl (2009) emphasised that PGMs are intended to graphically encode prior judge-

ments of independencies before beginning any probabilistic considerations. Pearl (1986)

reasons that it is easier for domain experts to make quick and reliable probabilistic judge-

ments about a small number of variables at a time rather than the entire complex system at

once. Thus, the compact representation provided by a graph of the independencies among

the variables makes it easier to elicit relevant conditional probabilities from the domain ex-

pert. Additionally, these independencies enable us to factorise the joint distribution of the

variables into several smaller distributions – each involving a smaller subset of variables.

Through the computational advantages leveraged by the decomposition of the joint distri-

bution, PGMs facilitate quick and efficient inference and propagation of evidence within a

complex high-dimensional system. Further, these computational benefits also enable devel-

opment of efficient model selection algorithms.

PGMs can be broadly categorised as those represented by undirected graphs, di-

rected graphs and mixed graphs (Studený, 2005). Undirected graphs are also known as

Markov networks or Markov fields and they represent conditional independence relation-

ships within the graph with undirected edges (see e.g. Lauritzen (1996)). Directed graphs

are typically represented by DAGs. The most popular among these is the BN. We shall dis-

cuss BNs, some of its dynamic variants and its limitations in Section 2.3. The third category

consists of graphs which contain both directed and undirected edges. These are also known

as chain graphs and they were introduced by Lauritzen and Wermuth (1989).

While a majority of the PGMs represent conditional independencies among a set of

random variables; there are instances of PGMs which take a more event-based approach.

Schlaifer and Raiffa (1961) presented decision trees – although not historically included

within the literature of PGMs – to describe the sequential unfolding of events through a

combination of controllable (decision) nodes and uncontrollable (chance) nodes leading to

the final outcome represented by the leaves (value nodes) of the tree and often associated

with a utility or monetary value. The need for a compact representation of decision trees

for larger problems led to the development of influence diagrams in Howard and Matheson

(1981). Influence diagrams are represented graphically by a DAG composed of decision,

chance and value nodes, and in fact, they are a generalisation of BNs (see e.g. Smith

10



(2010)). However, under their original formulation, influence diagrams were viewed as a

“front end” of a decision analysis problem with the evaluation still relying on the decision

tree. This changed when Shachter (1986) presented an algorithm for evaluating a decision

problem directly through the influence diagram representation. Due to this, decision trees

lost attention within the world of graphical modelling. Influence diagrams, on the other

hand, remain popular as a tool for complex decision analysis.

While decision trees may have fallen out of use for reasoning and modelling of

uncertainty, many processes are still best described by domain experts as an evolution of

events. Translating such an event-based tree description to a variable-based BN is not triv-

ial. Particularly when the process exhibits context-specific conditional independencies or

asymmetric developments, a BN is unable to fully describe such processes (see Section

2.3.2). This led to the development of the graphical modelling family of CEGs described

in Chapter 3. Unlike a BN or indeed, an influence diagram, a CEG retains all the original

root-to-leaf paths represented in its corresponding tree description. This thesis focuses on

the development of a class of CEGs for processes which do not have an appropriate alterna-

tive BN representation. The rest of this chapter aims to present the necessary background

for the reader as well as some examples to motivate the need for such a class of CEGs.

2.2 Preliminaries

2.2.1 Graph Theory

In this section we review some graph theoretical concepts that will be used throughout this

thesis. For further details on these concepts, see D. B. West (2001).

Definition 2.1 (Graph). A graph G = (V(G), E(G)) consists of a vertex set V(G) and an

edge set E(G) such that each edge in E(G) connects a pair of vertices in V(G). The graph

G is said to be finite if both V(G) and E(G) are finite sets; otherwise it is said to be infinite.

Definition 2.2 (Directed, Undirected and Mixed Graphs). A graph G = (V(G), E(G)) is

• directed if each edge in E(G) has an associated directionality or orientation which

is represented in the graph by an arrow from the emanating vertex to the terminating

vertex;

• undirected if each edge in E(G) does not have any directionality which is represented

in the graph by a line between the pair of vertices;

• mixed if E(G) contains both directed and undirected edges.

The graph of a CEG is directed. Hence, the definitions below are presented for

directed graphs.
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Definition 2.3 (Simple Graphs and Multigraphs). A directed graph G = (V(G), E(G)) is

said to be a simple graph if it has no directed edges from a vertex to itself (also known as

a loop) and has at most one edge of a given directionality between any pair of vertices;

whereas it is said to be a multigraph if it is allowed to have loops and multiple edges of a

given directionality between a pair of vertices.

Definition 2.4 (Subgraph and Induced Subgraph). Given two graphs G1 = (V(G1), E(G1))

and G2 = (V(G2), E(G2)), the graph G2 is said to be a subgraph of the graph G1 if

V(G2) ⊆ V(G1) and E(G2) ⊆ E(G1). Further, graph G2 is said to be an induced subgraph

of the graph G1 if every edge in E(G1) whose both endpoints are in V(G2) is also an edge

in E(G2).

Definition 2.5 (Walk, Path and Cycle). A walk (of length k) in a directed graph G =

(V(G), E(G)) is a non-empty alternating sequence v0e0v1e1 . . . ek−1vk where vi ∈ V(G) and

e j ∈ E(G) such that edge e j emanates from vertex v j and terminates in v j+1 for 0 ≤ j < i ≤ k.

A walk where all vertices are distinct is called a path. A walk where v0 = vk is called a

cycle.

Definition 2.6 (Connected Graph and Connected Components). A directed graph G =

(V(G), E(G)) is said to be connected if its undirected version is non-empty and every pair

of distinct vertices is connected by a path. If a graph G is disconnected, each maximally

connected subgraph of G is called a connected component.

Definition 2.7 (Directed Acyclic Graph). A directed acyclic graph (DAG) is a directed

graph which does not contain any cycles.

Definition 2.8 (Parent and Child). In a directed graph G = (V(G), E(G)), if there exists an

edge in E(G) that emanates from vertex v and terminates in vertex v′ for v, v′ ∈ V(G), v is

said to be the parent of v′, and v′ is said to be the child of v.

Definition 2.9 (Tree). A directed graph G = (V(G), E(G)) is said to be a tree if its undi-

rected version is connected and contains no cycles. A vertex v0 ∈ V(G) is designated as

the root vertex. The root vertex has no parents. Each other vertex in the tree has exactly

one parent. The vertices with no children are called leaves. A disjoint collection of trees is

known as a forest.

Example 2.10. All three graphs in Figure 2.1 are directed graphs. Figure 2.1(a) shows

a multigraph as it contains two edges of the same directionality from vertex 1 to vertex 2

whereas Figure 2.1(b) shows a simple graph which is also a DAG and a tree. Consider the
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(a) (b)
(c)

Figure 2.1: A directed, connected, multigraph (a) along with its connected induced sub-
graph (b) and disconnected subgraph (c).

following sequences in the graph in Figure 2.1(a):

ρ1 = v1, e1,4, v4, e4,5, v5, e5,3, v3, e3,4, v4;

ρ2 = v1, e1,4, v4, e4,5, v5, e5,3, v3;

ρ3 = v4, e4,5, v5, e5,3, v3, e3,4, v4.

Sequence ρ1 is a walk, ρ2 is a path and ρ3 is a cycle. Figure 2.1(b) shows a connected,

induced subgraph of the graph in Figure 2.1(a) whereas Figure 2.1(c) shows a disconnected

subgraph of the graph in Figure 2.1(a). The subgraphs in Figure 2.1(c) labelled G1 and G2

are its connected components.

Definition 2.11 (Vertex Contraction). In a directed graph G = (V(G), E(G)), the contrac-

tion of a pair of vertices v and v′ results in a graph where v and v′ are replaced by a single

vertex v∗ such that the set of edges terminating at (emanating from) v∗ are given by the

union of edges terminating at (emanating from) vertices v and v′. Here, vertices v and v′

need not be connected by an edge prior to the contraction.

Definition 2.12 (Graph Isomorphism). Two directed graphs G1 = (V(G1), E(G1)) and G2 =

(V(G2), E(G2)) are isomorphic if there is a bijection f : V(G1) → V(G2) such that there is

an edge from vertex v to vertex v′ in E(G1) for v, v′ ∈ V(G1) if and only if there exists an

edge from vertex f (v) to vertex f (v′) in E(G2) for f (v), f (v′) ∈ V(G2). Such an isomorphism

is adjacency-preserving or structure-preserving. In coloured graphs, isomorphism can also

be defined to be colour-preserving.
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(a) (b)
(c)

Figure 2.2: Graphs (a) and (b) are structurally isomorphic. Graph (c) is obtained from graph
(a) by contracting vertices 3 and 5.

Example 2.13. Consider the graphs in Figure 2.2. The graphs in Figure 2.2(a) (sayG1) and

Figure 2.2(b) (say G2) are structurally isomorphic where the bijection is given as follows

f : V(G1)→ V(G2)

such that f (i) = i + 5.

The graph in Figure 2.2(c) is obtained by contracting vertices 3 and 5 in the graph in Figure

2.2(a) into a single vertex.

2.2.2 Conditional Independence

We begin by presenting a definition of independence and conditional independence below.

Definition 2.14 (Independence and Conditional Independence). Consider three disjoint

subsets X, Y and Z of a set of random variables V = {V1,V2, . . . ,Vn}. We say that X
and Y are independent if and only if their joint probability density or mass function p(x, y)

decomposes as follows

p(x, y) = p(x)p(y), (2.1)

for all values x and y of the random variable sets X and Y. Further, X and Y are said to be

conditionally independent given Z, written as X y Y |Z, if and only if

p(x | y, zzz) = p(x | zzz) whenever p(y, zzz) > 0, (2.2)
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for all values x, y and z of the random variable sets X, Y and Z.

We next explore how conditional independence relationships can be expressed graph-

ically. Dawid (1979) and Spohn (1980) theorised the statistical properties of conditional

independence which are given below. Let W,X,Y and Z be disjoint subsets of a set of

random variables V = {V1,V2, . . . ,Vn}. Let · y ·|· be the ternary conditional independence

relation. The following four properties hold for any underlying probability measure

Symmetry :X y Y |Z =⇒ Y y X |Z;

Decomposition :X y (Y, W) |Z =⇒ X y Y |Z and X yW |Z;

Weak union :X y (Y, W) |Z =⇒ X y Y | (Z,W);

Contraction :X y Y | (Z,W) and W y Y |Z =⇒ (W, X) y Y |Z.

This axiomatic basis of conditional independence was then linked to vertex separation con-

ditions in graphs by Pearl and Paz (1986). It is through this connection that conditional

independence relationships can be represented by separation in graphs. The above four

properties constitute the semi-graphoid axioms, and any independence model that respects

these four properties is called a semi-graphoid. Further, if the underlying probability mea-

sure is strictly positive, a fifth property holds

Intersection :X y Y | (Z, W) and X yW | (Y, Z) =⇒ X y (Y, W) |Z.

An independence model that respects these five properties is called a graphoid.

We now present the related concept of context-specific conditional independence.

We shall explore the representation of context-specific conditional independence in graphi-

cal models later in this chapter.

Definition 2.15 (Context-Specific Conditional Independence (Boutilier et al., 1996)). Con-

sider three disjoint subsets X, Y and Z of a set of random variables V = {V1,V2, . . . ,Vn}. We

say that X and Y are said to be context-specific conditionally independent given the context

Z = z, written as X y Y |Z = z, if and only if for some value z of Z

p(x|y, z) = p(x|z) whenever p(y, z) > 0. (2.3)

for all values x and y of the random variable sets X and Y.

Appendix A provides the forms of the mass and density functions of the probability

distributions that feature in this thesis.
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2.3 Bayesian Networks

Bayesian networks are a graphical modelling family that represent the probabilistic relation-

ships among a set of variables in terms of conditional independence statements. The BN

was first introduced in Pearl (1986) and has since been applied to a wide range of domains

for reasoning in the presence of uncertainty. The vertices of a BN represent the variables

of interest and a directed edge between two vertices represents informational or causal de-

pendencies between the two variables. These dependencies are quantified by conditional

probabilities of a variable given the values assumed by its parent variables in the network.

For a detailed review of BNs and their applications, see for example Cowell et al. (1999),

Koller and Friedman (2009), Pearl (2009), and Korb and Nicholson (2010).

Definition 2.16 (Bayesian Network). A Bayesian network (BN) B = (G, P) is a probabilis-

tic graphical model over a set of variablesXXX = {X1, X2, . . . , Xn}. Here G = (V(G), E(G)) is

a DAG whose vertices are given by the variables inXXX, and P is a joint probability distribu-

tion over the variablesXXX. The edge set E(G) ⊆ V(G) × V(G) consists of directed arcs such

that lack of an edge between two nodes represents conditional independence between the

variables represented by the nodes, and similarly, edges between nodes encode conditional

dependence. This conditional independence structure allows the joint probability P to be

factorised by the chain rule as

P(XXX = xxx | G) =
∏
Xi∈XXX

P(Xi = xi|Pa(Xi) = xPa(Xi))

where Pa(Xi) is the set of parents of the node Xi in G.

The DAG of the BN encodes the following conditional independence statements

Xi y Nd(Xi)\Pa(Xi) | Pa(Xi) (2.4)

where Nd(Xi) are the non-descendants of Xi, i.e. all the variables in G that do not have a

directed path from Xi to themselves. This is known as the local directed Markov property.

However, more conditional independence relationships can be read directly from the graph

of a BN using the d-separation theorem; first defined by Verma and Pearl (1988) and later

presented as the global directed Markov property by Lauritzen (1996).

Definition 2.17 (d-Separation Theorem (Verma & Pearl, 1988)). Let X, Y and Z be three

disjoint subsets of vertices in the DAG G of a BN B = (G, P). We say that Z d-separates

X from Y if and only if there is no undirected path (i.e. ignoring the directionality of the

edges) in G from a vertex in X to a vertex in Y along which the following conditions hold:
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1. Every collider vertex – a vertex with converging arrows – either is in or has a descent

in Z;

2. Every other vertex is outside Z.

Through its factorised representation of the joint probability distribution of a model,

the BN exploits the conditional independence relationships among the variables of a pro-

cess. This allows for a reduction of the dimensionality of a large complex process. Further,

through the d-separation theorem, all the conditional independence relationships encoded

in the BN model can be read directly from its graph topology. Since its inception, research

in BNs has been a very active research field and BNs have been applied to a wide range of

domains; thereby establishing themselves as a popular modelling tool. A wide range of BN

methodologies now exist for model selection (e.g. Heckerman et al. (1995) and Cussens

(2008, 2011)), inference (e.g. Shafer and Shenoy (1990) and Darwiche (2003)) and causal

discovery (e.g. Pearl (1994, 2009)). In Section 2.3.2 we discuss some limitations of BNs.

2.3.1 Dynamic Variants of Bayesian Networks

Over the decades, several dynamic variants of BNs have been proposed in the literature,

such as dynamic BNs (DBNs) (Dean & Kanazawa, 1989), continuous time BNs (CTBNs)

(Nodelman et al., 2002), hybrid time BNs (Liu et al., 2017) and temporal nodes BNs

(Arroyo-Figueroa & Sucar, 1999). In this review we shall focus on the two main dynamic

variants: DBNs and CTBNs.

Definition 2.18 (Dynamic Bayesian Network). A dynamic Bayesian network (DBN) is a

dynamic variant of the BN that evolves in discrete time. A DBN, defined over a set of

variables XXX(t) = {X1(t), X2(t), . . . , Xn(t)} representing a time-series, is given by the tuple

(B1, . . . ,Bn) where B1 is the initial BN over XXX(1) and each subsequent BN Bt represents

the state of the system at time-slice t over XXX(t) for t ≥ 2. Assuming the system satisfies the

first-order Markov property, the BN Bt is connected to the BN Bt+1 by directed inter-slice

temporal arcs to represent the effect of the variables at time t on the variables at time t + 1.

A common simplification of the DBN is to assume stationarity of the graphical

structure and the model parameters over time. Such a DBN is called a 2-time-slice DBN

and can be compactly given by the tuple (B1,B→) where B1 is the initial BN and B→ is the

transition BN that describes the dependencies of a variable X at time t given the values of

its parents in time-slices t and t − 1.

Definition 2.19 (Continuous Time Bayesian Network). A continuous time Bayesian net-

work (CTBN) B = (B0,B→) for a set of variables XXX = {X1, X2, . . . , Xn}, such that each Xi

has a finite state space, evolves in continuous time and consists of two components. The
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first is the initial distribution P0 which is specified as a BN B0 over XXX. The second is a

continuous transition model B→ consisting of a possibly cyclic graph G whose nodes are

the variables of XXX and where the dependencies between the variables, denoted by directed

edges, are quantified by a conditional intensity matrix QXi |Pa(Xi) for each variable Xi ∈ XXX.

A CTBN models the evolution of a complex system evolving in continuous time.

It assumes that the system experiences at most one transition at a time, i.e. no two transi-

tions may occur simultaneously. The conditional intensity matrix for a variable models the

transition from one state of the variable to another state. Each variable, conditioned on its

parents, is modelled by a continuous time Markov process. Thus, an implicit assumption

of the model is that the holding time in any state of a given variable follows an exponential

distribution. A detailed discussion on CTBNs is presented in Chapter 5 in Section 5.2.2

where it is compared to the continuous time DCEG model presented therein.

2.3.2 Limitations of Bayesian Networks

Despite their inferential and representational advantages and success across a wide range

of domains, BNs are not the optimal choice of model for certain processes. In particular,

BNs are not a suitable model for processes that exhibit one or both asymmetries described

below:

1. context-specific conditional independence (see Definition 2.15) where the indepen-

dence relationship holds only for certain values of the conditioning variable;

2. asymmetric event space that does not admit a product space structure.

There have been several modifications suggested in the literature to enable BNs

to accommodate context-specific conditional independencies. Most of these modifications

are specifically designed for inferential gains whereas some others also consider the rep-

resentational benefits of graphically expressing these independencies within the BN. In an

early attempt, Boutilier et al. (1996) and N. L. Zhang and Poole (1999) replace the condi-

tional probability table (CPT) of the BN with tree structures to represent context-specific

conditional independencies. Boutilier et al. (1996) then uses these tree-structured CPTs

to rearrange the graph of the BN such that a single variable could be represented by mul-

tiple vertices in this modified graph. Poole and Zhang (2003) proposed contextual belief

networks which are BNs where the probability assignments for each variable are only spec-

ified for its parent contexts. Here the parent contexts for a variable are constructed based on

the variable being conditionally independent of a subset of its parent variables when con-

ditioned on the realisations of its other parent variables. All the above approaches aim to

exploit contextual independencies within a process for faster and more efficient inference,
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and not for representational benefits. Similarly, several methods have been proposed for

learning BNs in the presence of contextual independencies but they do not offer represen-

tational improvements. These search methods usually involve learning the global structure

of the BN, followed by learning the local structure of each CPT of the BN given a partic-

ular global structure (see e.g. Friedman and Goldszmidt (1996), Chickering et al. (1997),

Jabbari et al. (2018), and Shen et al. (2020)).

Geiger and Heckerman (1996) proposed an extension to the BN framework in the

form of Bayesian multinets to visually represent context-specific conditional independen-

cies within the graphical representation of the BN. In a Bayesian multinet defined over a

set of random variables XXX = {X1, X2, . . . , Xn}, one of the variables (say Xh, 1 ≤ h ≤ n) is

selected to be the “hypothesis variable” and the values in the sample space of the hypothe-

sis variable are referred to as “hypotheses”. The hypothesis variable is chosen such that a

partition of the sample space of Xh can be formed where each set of hypotheses in the parti-

tion gives rise to a distinct set of conditional independencies, and hence a distinct BN over

the random variables XXX. A Bayesian multinet is a collection of distinct local BNs where

each BN represents the conditional independencies among the variables XXX for a specified

subset of hypotheses. In this way, Bayesian multinets encode asymmetric independencies.

Another related class of models is the similarity network proposed by Heckerman (1990).

A similarity network is also a collection of distinct local BNs where each local BN helps to

discriminate among two subsets of hypotheses, say h1 and h2, in the partition of the sample

space of Xh. A local BN differentiating between sets h1 and h2 is defined only over the

random variables inXXX that help to discriminate between these two sets of hypotheses. Both

of the above approaches result in a fragmented representation of a process, and this issue

gets worse when more than one hypothesis variable is considered.

By design, BNs are unable to explicitly encode, within their graph and statistical

model, asymmetries that give rise to non-product event spaces. At the time of writing, no

known extensions to the BN framework have been proposed to address this issue. We dis-

cuss this further in Chapter 4 where we explore how such asymmetries can be incorporated

within a CEG model.

2.4 Chain Event Graphs

In this section, we present a non-technical description of CEGs and demonstrate, through

an example, how it encodes context-specific conditional independencies and asymmetric

event spaces within its graph. A formal review of CEGs is present in Chapter 3.

A chain event graph is a graphical modelling family that is represented by an acyclic

directed multigraph (Smith & Anderson, 2008; Collazo et al., 2018). The construction of
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a CEG for a process begins by eliciting the event tree describing the process. An event

tree provides an intuitive framework for describing the evolution of a process through a

sequential unfolding of events (Shafer, 1996). The transformations an event tree undergoes

to become the graph of its associated CEG can be summarised as below:

• Vertices in the event tree whose one-step-ahead evolutions, i.e. conditional transition

probabilities, are equivalent are assigned the same colour to indicate this symmetry;

• Vertices whose rooted subtrees (i.e. the subtree formed by considering that vertex

as the root) are isomorphic – in the structure and colour preserving sense – are con-

tracted into a single vertex which retains the colouring of its merged vertices;

• All the leaves of the tree are merged into a single vertex called the sink.

Each root-to-sink path of a CEG represents a possible trajectory of an individual

within the process. We present an example below of a simplified infection process.

Figure 2.3: Event tree for the infection process described in Example 2.20.

Example 2.20 (Infection example). We reconsider the infection example introduced in Sec-

tion 1.1. We can define three variables to describe this process: XXX = {XS , XT , XO} where XS

indicates the strain of the virus with sample space {Strain 1, Strain 2}; XT indicates the type

of treatment with sample space {Treatment 1,Treatment 2}, and XO indicates the outcome

of the treatment with sample space {Recovery,Death}. Figure 2.3 shows the event tree for

the above process. Consider the three different cases below:
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Case 1: The probability of recovery is independent of the strain of the virus that

caused the infection, given the type of treatment administered. This can be expressed as

XO y XS | XT .

This implies that the one-step-ahead evolutions of vertices s3 and s5, and of vertices s4

and s6 are equivalent. Additionally, the rooted subtrees for these pairs of vertices are iso-

morphic. The CEG and BN in Figure 2.4 both encode the above conditional independence

relationship.

(a)

(b)

Figure 2.4: Case 1 encoded within (a) a CEG and (b) a BN.

Case 2: The probability of recovery is independent of the strain of the virus that

caused the infection given that treatment 1 has been administered but not otherwise. This

can be expressed as

XO y XS | XT = Treatment 1

XO 6y XS | XT = Treatment 2.

This implies that the one-step-ahead evolutions of vertices s3 and s5 are equivalent

but s4 and s6 are not. This is a type of context-specific conditional independence. A standard

BN cannot represent this within its graph topology. Figure 2.5 shows a CEG, a Bayesian

multinet and a similarity network that can encode this context-specific relationship.
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(a)

(b)

(c)

Figure 2.5: Case 2 encoded within (a) a CEG, (b) a Bayesian multinet, and (c) a similarity
network.

Case 3: Finally, we consider here the case where treatment is only available to

those who are infected with strain 1 of the virus. This could happen if the treatments were

available in short supply or they were found to be ineffective against strain 2. A BN, includ-

ing its variants and extensions, cannot represent this information as they all have a product

event space. This case gives rise to a non-product event space as for the individuals infected

with strain 2, there is no variable of treatment to be considered. Figure 2.6 shows a CEG

that can represent the asymmetric event space for this process.

2.5 Alternative Graphical Models

Finally, in this section, we briefly discuss two other modelling frameworks that could be

used as alternatives to CEGs for modelling processes with asymmetric independence struc-
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Figure 2.6: A CEG representing case 3.

tures and asymmetric event spaces.

The first of these is the probabilistic decision graph (PDG); introduced in Bozga

and Maler (1999) for automated verification of discrete systems, and later developed as

a tool for probabilistic model representation and inference in Jaeger (2004) and Jaeger et

al. (2006). A PDG is, in fact, a collection of graphs – each based on an underlying tree.

Although the structural syntax of these models is close to that of CEGs, there are a few

significant differences. First, a CEG encodes local symmetries within its graph through its

vertex colouring. Second, a CEG represents a process through a unified graph representa-

tion. Lastly, a CEG can represent context-specific conditional independencies in addition

to all the conditional independencies that can be represented by a discrete BN (as discrete

BNs are a special class of CEGs (Smith & Anderson, 2008)). While PDGs can represent

at least some context-specific conditional independencies, there are some conditional in-

dependencies – that can be represented by BNs and CEGs – which they cannot represent

within their structure (Jaeger, 2004). For instance, no PDG can represent the indepen-

dence structure implied by a BN with variables XXX = {X1, X2, X3, X4} and directed edges

(X1, X2), (X1, X3), (X2, X4) and (X3, X4).

Finally, we discuss a family of models for discrete longitudinal data called the

acyclic probabilistic finite automata (APFA) (Ron et al., 1998). Being developed within

theoretical computer science, APFAs are formally studied as a finite state machine which

is a mathematical model of computation. However, APFAs can equivalently be consid-

ered to be a PGM family. An APFA generates strings of symbols, and was developed for

tasks such as speech recognition, language processing and machine translation (Edwards

& Ankinakatte, 2015). Similar to CEGs, an APFA is represented by an acyclic multigraph

with a single root and a single sink. Each edge of the graph is associated with a symbol
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and a conditional probability. Each root-to-sink path represents a string of symbols. Like

CEGs, these graphs encode context-specific conditional independencies within their topol-

ogy. Ankinakatte and Edwards (2015) and Edwards and Ankinakatte (2015) showed that an

APFA can be constructed from an underlying tree through vertex contractions. However,

unlike CEGs, whenever two vertices are merged in the tree, their entire rooted subtrees

are also merged. Vertex contractions are determined by non-Bayesian methods such as by

hypothesis testing with a likelihood ratio test. Additionally, CEGs differ from APFAs as

they can encode a larger set of conditional independencies, including those of the context-

specific variety, through their vertex contractions and vertex colouring, and their framework

allows for non-product event spaces which cannot be accommodated by the APFA frame-

work.
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Chapter 3

Chain Event Graphs

In this chapter we review the CEG family of models. CEGs were developed to overcome

the drawbacks of BNs described in Section 2.3.2. Prior to the work presented in this thesis,

CEG research has largely focused on the stratified class of CEGs for discrete processes.

Hence, in this chapter, our review will be structured around stratified CEGs. The focus

of the literature on the stratified class was primarily because stratified CEGs contain the

class of discrete BNs as a special case (Smith & Anderson, 2008) which facilitates straight-

forward comparison of the two model classes. However, unlike BNs, stratified CEGs can

explicitly embed context-specific conditional independencies within their graph topologies.

In Section 3.1 we review the notations and semantics of stratified CEGs. In Section

3.2, we review conjugate learning, prior specification and model selection algorithms for

CEGs. Later, in Section 3.3 we review a probability propagation algorithm for CEGs.

Finally, we conclude with Section 3.4 where we review dynamic variants of the CEG.

3.1 Introduction to CEGs

CEGs were first proposed in Smith and Anderson (2008) as an alternative to BNs for pro-

cesses exhibiting context-specific conditional independencies with symmetric or asymmet-

ric event spaces. Recall that contextual conditional independence exists between two sets of

variables when the independence structure between them holds only for certain assignments

of the conditioning set of variables. Such independencies regularly arise naturally in many

applications (N. L. Zhang & Poole, 1999). As described in Section 2.3.2, BNs and their

extensions are unable to fully describe context-specific independencies within their graph

topologies. Below we describe how CEGs overcome these shortcomings of BNs by being

a transformation of the underlying event tree of the process being modelled. Thus, their

description is generally event-based rather than variable-based. However, as we shall see
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later in this chapter, in the case of stratified CEGs, the event and variable based descriptions

are equivalent.

In several domains such as law, forensics, risk assessment, public health interven-

tions, and medical decision making, it is more natural for a process to be described as an

unfolding of events. A domain expert in likely then to describe the process based on how

things happen. Such a description can be most easily represented by a tree structure. In

fact, it is this key point that led to the development of CEGs directly from such trees as

converting a tree-like description into the alternative BN is not trivial and in several cases,

results in an ill-suited BN representation of the process. A tree describing the evolution

of a process is known as an event tree. Event trees provide an intuitive description of the

evolution of a process (Shafer, 1996). This makes the elicitation of an event tree rather

than the BN as the first step more natural for such processes. Note that probability trees are

event trees with probabilities assigned to their edges. Decision trees, on the other hand, are

tree-based decision support tools built with decision and chance nodes, and they are closely

associated with influence diagrams (Howard & Matheson, 1981), see Section 2.1.

Each non-leaf vertex in the event tree represents the state an individual may be

in, and its children represent the possible events that follow from this vertex. Thus, the se-

quence of events described by each root-to-leaf path in the event tree represents one possible

way in which an individual experiences the process. Thereby the set of root-to-leaf paths of

the event tree form the atoms of the event space of the process, i.e. the path σ−algebra of

the event tree (Thwaites et al., 2010). We note here that as the number of events needed to

describe the possible developments of a process grows, the size of its corresponding event

tree (in terms of the cardinality of its vertex and edge sets) also increases. The size of the

event tree increases linearly with the number of events and exponentially with the number

of variables added to the description of the process. Thus, event trees may become un-

wieldy for large complex processes which might make them difficult to visually analyse.

Nonetheless, event trees are easy for the statistician to transparently elicit from the natural

language descriptions of a domain expert even if the event tree thus elicited may be very

large.

Example 3.1 (Infection example). Here we build on the infection example introduced in

Section 1.1. Suppose we have individuals in three residential settings: hospitals, care homes

and in the general community. Further, suppose that we are interested in analysing the

path an individual takes from disease onset to recovery or death on infection by one of

two strains of a certain virus. The individuals receive one of two treatment types. As

this problem conforms to a product space, this process can be completely described by the

variables XXX = {XL, XS , XT , XO} where XL indicates the residential setting, XS the strain

of virus, XT the type of treatment, and XO the outcome of the treatment. Note that in this
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example, there is a natural strict total order given by XL ≺ XS ≺ XT ≺ XO. The event

tree describing this process is given in Figure 3.1. Here, an individual at vertex s4 is in

the hospital and has strain 1 of the virus. This individual will next be given treatment 1 or

2 which is represented by the vertices s10 and s11 which are the children of vertex s4. The

sequence of events (Hospital, Strain 1, Treatment 1, Recovery) given by the path from vertex

s0 to s22 represents an atom of the event space of the infection process considered here.

3.1.1 Notation and Semantics

Let T denote an event tree with a finite vertex set V(T ) and an edge set E(T ). A directed

edge e ∈ E(T ) from vertex v to vertex v′ with edge label l is an ordered triple given by

(v, v′, l). Note that when it is unambiguous, more specifically the case when there is only

one directed edge in a given direction between two vertices, the edge may be represented

by the indices of the starting and terminating vertices, i.e. such an edge from a vertex vi to

a vertex v j, i , j may be denoted by ei j. Observe that this is always the case for an event

tree but not necessarily for its CEG which can be a multigraph.

Denote by L(T ) the set of leaves in T . The non-leaf vertices in T are called situa-

tions and their set is denoted by S (T ) = V(T )\L(T ). The set of children of a vertex v are

denoted by ch(v). Let ΦT = {θθθv|v ∈ S (T )} where θθθv = (θ(e)|e = (v, v′, l) ∈ E(T ), v′ ∈ ch(v))

denotes the conditional transition parameters for each vertex v ∈ S (T ). A floret of a vertex

v in T is denoted by F(v) = (V(F(v)), E(F(v))) where V(F(v)) = {v ∪ ch(v)} and E(F(v)) is

the set of edges induced by V(F(v)) in T . Denote the set of root-to-leaf paths in an event

tree T by TΛ where a path is a sequence of edges from the root vertex to the leaf following

the directed edges.

Example 3.2 (Infection example continued). In Figure 3.1, for situation s4 ∈ S (T ) we have

emanating edges e4,10 = (s4, s10,Treatment 1) and e4,11 = (s4, s11,Treatment 2). The floret

of vertex s4 is given by F(s4) = (V(F(s4)), E(F(s4))) where V(F(s4)) = {s4, s10, s11} and

E(F(s4)) = {e4,10, e4,11}.

Next we define the concept of stages which is a key concept that enables us to

explore the local symmetries existing within the event tree structure. This ultimately is

what allows us to have a more compact representation of the event tree in the form of the

graph of a CEG.

Definition 3.3 (Stage). In an event tree T , two situations v and v′ are said to be in the

same stage whenever θθθv = θθθv′ . Additionally, for θ(e) = θ(e′) we require that e = (v, ·, l) and

e′ = (v′, ·, l) where edge e emanates from v and e′ emanates from v′.
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Figure 3.1: Event tree for the infection process described in Example 3.1.
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The latter condition states that the edges emanating from situations in the same stage

which have the same conditional transition probability must also share the same edge label.

When edge labels are not fixed, this condition can be relaxed, see Shenvi and Smith (2020a).

In this case, edges of vertices in the same stage are coloured to represent which edges share

the same conditional transition probabilities. This allows the statistician and domain expert

to retrospectively assign labels to events which have the same meaning but which could

have initially been assigned different labels. For an illustration, see the example below.

Example 3.4 (Retrospective edge labelling example). Consider the event trees in Figure

3.2. Here we study the process of reinfection. If the probability of reinfection being by

strain i, i = 1, 2, is independent of the strain of the first infection, then we could label the

edges as in Figure 3.2(a). Alternatively, given the first bout of infection was by strain i, if

the probability of reinfection by the same strain i is the same for i = 1 and i = 2, then it

might be more appropriate to have the edge labels as in Figure 3.2(b). Note that once the

appropriate edge labels are chosen, the edges lose their colouring.

(a) (b)

Figure 3.2: Event tree where edge labels are not fixed a priori. (a) and (b) show two possible
sets of edge labels.

As we will see in Chapter 5 in Section 5.7, edge colourings may have a different

interpretation in CEGs when edges are associated with holding times. For simplicity, in this

thesis we will only consider event trees where edge labels are fixed a priori.

Saying that two situations v and v′ are in the same stage can be interpreted as as-

serting that their one-step evolutions are equivalent. For instance, if situations s4 and s5 in

our infection example are in the same stage, then an individual in a hospital has the same

probability of receiving Treatment 1 irrespective of whether they have Strain 1 or Strain 2

of the infection.
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Observe that each stage is a set and the collection of stages partitions the vertex set

of the event tree. Here a collection refers to a set of sets. Thus, the collection of stages U

partitions V(T ) and each stage u ∈ U is a set of situations in V(T ) that belong to the stage

u. Stage memberships are represented by colouring the situations of T such that each stage

u ∈ U is represented by a unique colour.

Definition 3.5 (Staged Tree). An event tree T whose situations are coloured according to

their stage memberships is called a staged tree S with ΦS = ΦT .

Example 3.6 (Infection example continued). Suppose that recent studies lead us to deduce

the following:

XO y {XL, XS } | XT = Treatment 1

{XT , XO} y XS | XL = Community

XS y XL | XL , Community

This information can be represented using the stage structure. The stage partition here is

given by U which contains the following non-singleton sets:

{s1, s2}, {s8, s9}, {s19, s21}, {s10, s12, s14, s16, s18, s20}.

The staged tree for this example is given in Figure 3.3. Thus, conditional indepen-

dence relations, including those of the context-specific nature such as the ones above, can

be represented explicitly within the topology of the staged tree. Note that, to prevent vi-

sual cluttering, the colouring of trivial stages (i.e. stages which are singleton sets) is often

suppressed.

Once we have the staged tree of the process, we can define the concept of positions.

Definition 3.7 (Position). In a staged tree S, two situations v and v′ are said to be in the

same position whenever we have ΦSv = ΦSv′ where Sv and Sv′ are the coloured subtrees of

S rooted at v and v′ respectively.

This definition implies that the coloured rooted subtrees of situations which are in

the same position are isomorphic in the colour-preserving and structure-preserving sense. In

a non-technical sense, if situations v and v′ are in the same position, their future evolutions

are probabilistically equivalent. The collection of positions W is a finer partition of V(T )

and each position w ∈W is a set of situations of V(T ) that belong to the position w.

Example 3.8 (Infection example continued). In the infection example, the non-trivial posi-
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Figure 3.3: Staged tree for the infection example.
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tions are given by the sets:

{s8, s9}, {s19, s21}, {s10, s12, s14, s16, s18, s20}.

Note again that stages and positions are sets. Wherever necessary, we will refer to

them as a stage set or a position set to reiterate this fact.

We construct the vertex set of a CEG from its collection of positions by choosing a

representative situation from each position set. Thus a CEG exploits the symmetries within

the process to arrive at a compact representation of its event tree.

Definition 3.9 (Chain Event Graph). A chain event graph (CEG) C = (V(C), E(C)) is de-

fined by the triple (S,W,ΦS) with the following properties:

• V(C) = R(W)∪w∞ where R(W) is the set of situations representing each position set

in W, w∞ is the sink vertex and for w ∈ V(C), θC(w) = θS(w). Vertices in R(W) retain

their stage colouring.

• Situations in S belonging to the same position set in W are contracted into their

representative vertex contained in R(W). This vertex contraction merges multiple

edges between two vertices into a single edge only if they share the same edge label.

• Leaves of S are contracted into sink vertex w∞.

The event tree notation described earlier in this subsection extends to staged trees

and CEGs in the obvious way.

Example 3.10 (Infection example continued). The graph of the CEG for the infection ex-

ample is given by Figure 3.4. Here again the vertex colouring has been suppressed for

vertices that represent singleton stages.

Just as in BNs, conditional independencies, including those of the context-specific

nature, can be deduced directly from the graph of the CEG without reference to the un-

derlying parameters of the model (Smith & Anderson, 2008). There also now exists a

d-separation theorem for CEGs, analogous to the one for BNs, presented in the thesis of

Dr Rachel Wilkerson (Wilkerson, 2020). We note here that the CEG literature has, thus

far, assumed that the transformation of a staged tree into a CEG does not lead to the loss

of any information that was represented by the staged tree. This is essential to ensure that

reasoning in the CEG is compatible with the information represented by its staged tree as

it is typically the event tree and the staged tree that are verified to be requisite (Phillips,

1984) – that is, verified to have no obvious inadequacies in the implications of the model

– by the domain experts. We show in Chapter 4 that this conjecture is true by proving that

the mapping from a staged tree to a CEG is bijective. This then gives rise to the question
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Figure 3.4: CEG for the infection example.

of why a CEG representation of a process may be useful over and above its staged tree

representation since they both encode the same information. A discussion was presented in

Shenvi and Smith (2020a), and is reviewed in the next subsection.

3.1.2 Why not just Staged Trees?

Before we review stratified CEGs and the existing methodologies for CEGs, we discuss here

why the CEG representation is useful. Staged trees, like CEGs, are a graphical representa-

tion of a parametric statistical model and their colouring encodes conditional independence

information about the events describing the process (Görgen & Smith, 2016, 2018). The

thesis of Dr Christiane Görgen (Görgen, 2017) focused on the algebraic characterisation of

staged trees and investigated how putative causal hypotheses can be inferred from a class of

staged trees. So why do we need CEGs when staged trees are themselves powerful tools?

While we show later in Chapter 4 that the staged tree and CEG representations of a

process are equivalent, the graph of a CEG is simpler and more compact. Typically, a CEG

contains far fewer vertices and edges than its corresponding staged tree (Shenvi & Smith,

2020a). Let Vk ⊆ V(T ) denote the vertices of an event tree T with k outgoing edges and

let nk = |Vk|. Then T has |V(T )| =
∑d

k=0 nk vertices and |E(T )| =
∑d

k=1 knk edges where

d = max{k : nk ≥ 0}. When a CEG C partitions Vk into 1 ≤ mk ≤ nk positions, it is trivial to

check that it has |V(C)| =
∑d

k=1 mk + 1 vertices (including the sink) and |E(C)| =
∑d

k=1 kmk

33



edges. So we have

n − 1 ≤ |V(T )| − |V(C)| =
∑d

k=1 (nk − mk) + n − 1 ≤
∑d

k=0 (nk − 1) ,

0 ≤ |E(T )| − |E(C)| =
∑d

k=1 k (nk − mk) ≤
∑d

k=1 k (nk − 1) ,

where n = |L(T )|. Let m = max{|λ| : λ ∈ TΛ} be the length of the longest root-to-leaf

path of T . It is easy to check that |V(T )| and |E(T )| typically increase as a power of m,

whilst when its CEG expresses many symmetries, |V(C)| and |E(C)| increase linearly in

m. In fact, for dynamic processes, the staged tree is infinite but the corresponding CEG

might be finite as we shall see in the forthcoming chapters. Crucially, while there now

exists a d-separation theorem for CEGs (Wilkerson, 2020), such methodologies are yet to

be developed for staged trees.

Note that there exists an interesting framework called conditional independence

trees (CITs) (H. Zhang & Su, 2004; Su & Zhang, 2005) which decompose decision trees

into smaller subtrees by exploiting the conditional independence relationships (including

those of the context-specific nature) exhibited by the problem. The key aim of CIT models is

to provide a solution to the replication and fragmentation problems encountered by decision

trees in classification. While CITs support exploration of conditional independencies, their

theoretical development is still very nascent. As yet, they do not provide any formal method

of causal manipulation within these models and it is hard to see how these models can

be scaled to a dynamic variant. Most importantly, the representation they provide is too

fragmented for a structured, unified understanding of the problem.

3.1.3 Stratified CEGs

We now describe under what conditions an event tree or CEG is said to be stratified (see e.g.

Cowell and Smith (2014)). Suppose that a process can be described by a set of variables

given by XXX = {X1, X2, . . . , Xn}. Denote by I a permutation of the indices {1, 2, . . . , n} 7→

{i1, i2, . . . , in}. The permutation I can be used to reorder the components ofXXX givingXXX(I) ,

{Xi1 , Xi2 , . . . , Xin}. Let the state space of variable Xi be given by Xi. Let Xk(I) = Xi1 ×Xi2 ×

. . . × Xik , 1 ≤ k ≤ n. With this we define the concept ofXXX(I)-compatible event trees.

Definition 3.11 (XXX(I)-Compatible Event Tree). An event treeT is said to beXXX(I)-compatible

for some permutation I if its vertex set V(T ) contains a root vertex s0 as well as a vertex

s(xk(I)) for each xk(I) = (xi1 , xi2 , . . . , xik ) where xi j ∈ Xi j , j = 1, 2, . . . , k, 1 ≤ k ≤ n.

There are two important things to notice in this definition. The first is that it im-

plies that the event space of the process is equivalent to the product space generated by∏
Xi∈XXX(I) Xi. This directly implies that in an XXX(I)-compatible event tree the state space of
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a variable remains fixed irrespective of the realisations of the other variables in the prob-

ability space. Secondly, each situation s(xk(I)) ∈ V(T ) for xk(I) ∈ Xk(I), 1 ≤ k ≤ n is

at the same distance from the root s0 where distance between vertices v and v′ is mea-

sured as the number of edges on a path between them. Thus anXXX(I)-compatible event tree

can be described completely by the variables in XXX(I) where there exists a strict total order

Xi1 ≺ Xi2 ≺ . . . ≺ Xin as determined by the permutation I.

Example 3.12 (Infection example continued). In the infection example, recall that the set

of variables describing the process is given by XXX = {X1, X2, X3, X4}, where X1 = XL, X2 =

XS , X3 = XT , and X4 = XO. The sample space of each variable is given as X1 = {Hospital,

Care homes, Community} X2 = {Strain 1, Strain 2}, X3 = {Treatment 1, Treatment 2} and

X4 = {Recovery, Death}. Recall further that the infection process naturally implies a strict

total order of XL ≺ XS ≺ XT ≺ XO. Additionally, the event space of the event tree in Figure

3.1 conforms to the product space X1 × X2 × X3 × X4. Thus, the event tree in Figure 3.1 is

XXX(I)-compatible where I is the identity permutation, i.e. I(i) = i for i = 1, 2, 3, 4.

In contrast, the event-based description of a process does not rely on a pre-defined

set of variables. An event tree can be elicited by simply considering the unfolding of events

along each root-to-leaf path without regard to the variables defining the process. It follows

directly from the definition of an XXX(I)-compatible event tree that its variable-based and

event-based descriptions are equivalent.

Definition 3.13 (XXX(I)-Stratified CEG). A CEG is said to beXXX(I)-stratified for some permu-

tation I when its underlying event tree T isXXX(I)-compatible.

From this definition we can see that anXXX(I)-stratified CEG also has equivalent event

and variable based descriptions. Thus any XXX(I)-stratified CEG also has an associated BN

on the same variables given by XXX but not necessarily with the total order determined by

XXX(I) as the DAG of a BN determines a partial order on its variables (see e.g de Campos

and Castellano (2007)). The converse is also true that any discrete state BN can be written

as a stratified CEG; the proof for this result can be found in Smith and Anderson (2008).

However, a BN cannot directly represent context-specific independencies within its graph

topology (see Section 2.3.2) while a stratified CEG is expressive enough to do so. However,

note that CEGs are their own distinct family of models and they are not just an embellish-

ment of BNs. This fact is reinforced when we explore the modelling of processes with

asymmetric event spaces with non-stratified CEGs in Chapter 4. We shall see in Section 4.2

that the event and variable based descriptions for asymmetric processes are not equivalent,

and in Section 4.5 that CEGs are better-equipped than BNs for representing such processes.
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3.2 Conjugate Learning and Model Selection

3.2.1 Conjugate Learning

In this section, we shall consider conjugate updating of the parameters of a CEG model.

Conjugate analysis is attractive not only because it enables closed form updating of the

posterior and the model marginal likelihood but also because it lends an interpretation to the

hyperparameters of the priors and posteriors which can be lost when we resort to numerical

methods. This review is primarily based on the work of Freeman and Smith (2011a) and

Collazo et al. (2018). The methodology described here closely resembles the established

framework for conjugate learning developed for discrete BNs, see e.g. Heckerman et al.

(1995) and Heckerman (2008).

Consider a CEG C with collection of stages U = {u1, u2, . . . , uk}. Denote by ki

the number of outgoing edges from each situation in stage set ui, i = 1, 2, . . . , k. Recall

that the conditional transition probabilities from each situation within the same stage are

equivalent. Let the conditional transition parameter vector for each situation in stage ui

with ki outgoing edges be denoted by θθθi = {θi1, θi2, . . . , θiki} where θi j is the probability

that an individual in some situation s ∈ ui traverses along its jth outgoing edge, for j ∈

{1, 2, . . . , ki}. Assuming proper randomisation of the sampling experiment, the vector θθθi

represents the event probability parameters of a Multinomial distribution (Feller, 1971) and

hence,
∑ki

j=1 θi j = 1 and θi j ≥ 0. Here, we will make the latter condition stricter by requiring

that θi j > 0, j ∈ {1, 2, . . . , ki}. Assuming that we have no sampling zeros in our data, this

condition implies that there are no structural zeros in our model (see Section 4.1).

Suppose that we have a complete random sample (i.e. with no missing data) given

by y = {y1, y2, . . . , yk} such that each yi = (yi1, yi2, . . . , yiki) is a vector summarising the

number of individuals yi j, j ∈ {1, 2, . . . , ki} that start in some situation s ∈ ui and traverse

along its jth edge. The likelihood of the CEG C can be decomposed into the product of the

likelihood of each stage floret as follows:

p(y |ΦC,C) =

k∏
i=1

p(yi |θθθi,C) (3.1)

where ΦC = {θθθi|ui ∈ U}. Further, conditional on θθθi, the individuals in yi are independent of

each other, i.e. they are exchangeable. This makes the normalising constant equal to one

for each observation in the probability mass function of the Multinomial distribution. This

gives us

p(yi |θθθi,C) =

ki∏
j=1

θ
yi j
i j . (3.2)

36



Analogous to the modelling assumptions of local and global parameter indepen-

dence, and parameter modularity in BNs (see e.g. Spiegelhalter and Lauritzen (1990)), we

assume here that the transition parameters θθθ1, θθθ2, . . . , θθθk are mutually independent a pri-

ori. Under the separability of the likelihood shown above, it follows that they will also be

mutually independent a posteriori.

Now suppose that the CEG structure in which each situation is in a singleton stage

is called C0. Freeman and Smith (2011a) show that based on two assumptions, namely

1) path independence: the rates at which units traverse the root-to-sink paths in C0 are

independent, and 2) floret independence: the probability of units traversing an edge after

reaching a situation is independent of the rate at which they arrived at the situation, that each

parameter vector θθθi associated with singleton stage ui in C0 has an independent Dirichlet

prior. Hence, we assume here that each θθθi has a Dirichlet prior distribution with parameter

vector αααi = (αi1, αi2, . . . , αiki) where αi j > 0, j ∈ {1, 2, . . . , ki}. Thus, the prior distribution

of ΦC has the following density

p(ΦC | C) =

k∏
i=1

p(θθθi | C)

=

k∏
i=1

Γ(ᾱααi)∏ki
j=1 Γ(αi j)

ki∏
j=1

θ
αi j−1
i j , (3.3)

where v̄ =
∑n

i=1 vi for any vector v = (v1, v2, . . . , vn), and Γ(z) =
∫ ∞

0 xz−1 exp(−x) dx is the

Gamma function. Thus we have

p(θθθi | yi,C) ∝ p(θθθi | C)
ki∏

j=1

p(yi j |θθθi,C)

∝

ki∏
j=1

θ
αi j−1
i j θ

yi j
i j

=

ki∏
j=1

θ
αi j+yi j−1
i j . (3.4)

From this, it directly follows that θθθi|yi also has a Dirichlet distribution with parameter vector

ααα∗i = (α∗i1, α
∗
i2, . . . , α

∗
iki

) where α∗i j = αi j + yi j, j ∈ {1, 2, . . . , ki}, i ∈ {1, 2, . . . , k}. Thus, under

a conjugate analysis, the parameters for each stage can be updated independently in closed

form.

Another implication of the conjugate analysis is that the marginal likelihood is also
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available in closed form as follows

p(y | C) =

∫
ΦC

k∏
i=1

{
p(yi |θθθi,C) p(θθθi | C)

}
dΦC

=

∫
ΦC

k∏
i=1

{ ki∏
j=1

θ
yi j
i j ×

Γ(ᾱααi)∏ki
j=1 Γ(αi j)

ki∏
j=1

θ
αi j−1
i j

}
dΦC

=

k∏
i=1

{
Γ(ᾱααi)
Γ(ᾱαα∗i )

ki∏
j=1

Γ(α∗i j)

Γ(αi j)

}
. (3.5)

Here we note that model selection algorithms in BNs can be typically grouped into

three broad categories: constraint-based algorithms, score-based algorithms and hybrid al-

gorithms (Scutari, 2010, 2018). Model selection algorithms explored thus far for CEGs

have been score-based (see Section 3.2.3). The general approach involves combining prior

knowledge (through informative specification of the prior distributions) and data to identify

the maximum a posteriori (MAP) network structure that has the highest score. Under a

Bayesian framework for discrete state space CEGs and BNs, the MAP model is obtained

by maximising one of several possible Bayesian Dirichlet (BD) scores (Heckerman et al.,

1995). Other scoring functions such as the Bayesian information criterion (Schwarz, 1978),

Akaike’s information criterion (Akaike, 1974), factorised normalised maximum likelihood

(Silander et al., 2010) could alternatively be used.

We now describe the general form of the BD scoring function which is obtained

as the joint probability p(C, y) of a CEG structure C and the observed data y. This joint

probability can be written as

p(C, y) = p(C) p(y|C). (3.6)

where p(C) is the prior probability of the CEG structure given by model C. Equation 3.6

can also be written as

log p(C, y) = log p(C) + log p(y|C). (3.7)

It is standard to assume that all CEG structures are equally likely a priori. In this case, we

can score and compare candidate CEG models only by considering the log of the marginal

likelihood p(y|C) given in Equation 3.5. Thus maximising the BD score is equivalent

to maximising the log marginal likelihood. Henceforth, we shall refer to this as the log

marginal likelihood score denoted by Q(C) for a CEG C. The log marginal likelihood score
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Q(C) is given as follows

Q(C) =

k∑
i=1

{
g(ᾱααi) − g(ᾱαα∗i ) +

ki∑
j=1

{g(α∗i j) − g(αi j)}
}

(3.8)

where g(·) = log Γ(·). Within the BN setting, different choices for the prior Dirichlet hyper-

parameters produces different priors such as the K2 score (Cooper & Herskovits, 1991), the

Bayesian Dirichlet equivalent uniform score (Heckerman et al., 1995), and the more recent

Bayesian Dirichlet sparse score (Scutari, 2018). Each type of prior has a different property,

for example the BDeu score takes the same value for all DAGs in the same equivalence

class which lends them well to causal interpretation (Heckerman et al., 1995; Pearl, 2009).

In this thesis we use the general BD score function and discuss prior specification in Section

3.2.2. When we compare models using this score, the highest scoring model thus obtained

is the MAP model structure.

To compare two candidate CEG models, we use the logarithm of the Bayes Fac-

tor which is simply the likelihood ratio of the log marginal likelihoods of the competing

models. Hence, the log Bayes Factor of two distinct CEG models C and C′ is written as

log BF(C,C′) = Q(C) − Q(C′). (3.9)

Kass and Raftery (1995) provide a useful, albeit somewhat arbitrary, interpretation of the

Bayes Factor as given in Table 3.1.

log BF(C,C′) BF(C,C′) Evidence against C′

0-1.10 1-3 Not worth more than a bare mention
1.10-3 3-20 Positive
3-5 20-150 Strong
> 5 > 150 Very strong

Table 3.1: Interpretation of the Bayes Factor.

We shall now consider how this simplifies in the case of one-nested CEGs. Without

loss of generality, two CEGs C and C′ are said to be one-nested when two stages ui, u j ∈ UC

in C are represented by a single stage ui⊕ j ∈ UC′ in C′. Two stages can be combined in this

way if and only if their constituent situations meet the conditions under the definition of

stages. Thus, the situations in ui, u j and ui⊕ j have the same number of outgoing edges

denoted here by k. The log Bayes Factor will then simply be a linear combination of the
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terms involving the hyperparameters associated with stages ui, u j and ui⊕ j only as given by

log BF(C′,C) = g(ᾱααi⊕ j) − g(ᾱααi) − g(ᾱαα j) − g(ᾱαα∗i⊕ j) + g(ᾱαα∗i ) + g(ᾱαα∗j)

+

k∑
l=1

{g(α∗i⊕ j,l) − g(α∗il) − g(α∗jl) − g(αi⊕ j,l) + g(αil) + g(α jl)}. (3.10)

This simplifies the log Bayes Factor calculation as only terms associated with stages that

are different between two models are needed.

3.2.2 Prior Specification

Setting the hyperparameters of the Dirichlet priors over all the stage parameters is a non-

trivial and formidable task. There have been several choices proposed for setting the hyper-

parameters of the Dirichlet priors within a BN, see for example Heckerman et al. (1995),

Neapolitan (2003), and Scutari (2018). In this section we discuss two ways of specify-

ing the hyperparameters for the Dirichlet priors within a CEG. Recall first that since the

conditional transition parameters are assumed to be mutually independent, we can set the

transition parameter θθθi for stage ui ∈ U independently of the transition parameters for the

other stages in U.

Consider, for a CEG C, the floret F(s) for a situation s representing stage ui ∈

U in the graph. Note that there can be multiple situations representing any given stage

as situations constituting the same stage set are not necessarily in the same position set.

However, the conditional transition parameters associated with each situation representing

the stage in the CEG would be equivalent. Suppose |E(F(s))| = ki, i.e. situations in stage

ui have ki outgoing edges. Let Dir(αααi) where αααi = (αi1, αi2, . . . , αiki) be the prior for the

parameter θθθi associated with stage ui. The mean vector of the Dirichlet prior is given by

µµµi = (µi1, µi2, . . . , µiki) where µi j =
αi j
ᾱααi

, j = 1, 2, . . . , ki. Thus the vector αααi is completely

specified by the prior means µµµi and ᾱααi. The prior mean µi j can be interpreted as the fraction

of the population expected to traverse along the jth edge emanating from s in the graph

of the CEG C. This can be elicited from domain experts. We can interpret ᾱααi are the

imaginary or equivalent sample size (Scutari, 2018). This acts as a measure of the strength

of the beliefs of the domain experts with larger effective sample sizes being associated with

smaller variances on the domain experts’ beliefs. Here we are effectively treating the αi j’s

as “pseudo-counts”. However, it might not be easy or feasible to elicit the required prior

mean vectors or the imaginary sample size for each stage especially when there may be

several different experts contributing to the different parts of the CEG structure.

The second approach is similar to the first but requires considering the entire graph

of the CEG and not just individual florets. Here we use the mass conservation property
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(Collazo et al., 2018) which states that the number of imaginary units passing along the

edges of a situation s representing the stage ui must be equivalent to the number of imag-

inary units that arrive at situation s. This imaginary sample size and the way it is spread

across the edges of the graph would again need to be elicited from domain experts. The

difference between this approach and the previous one is that here the imaginary sample is

spread across the entire graph using the mass conservation property whereas in the previous

approach, each floret respects the mass conservation property but the imaginary sample size

for each vertex in the graph can be chosen independently. While this approach requires us

to only choose one imaginary sample size starting at the root, we still need to elicit how this

sample size would be spread across the entire graph.

Using the second approach we now define a default way of setting the hyperpa-

rameters which is useful in cases where enough information or expert opinion may not be

available to set appropriate hyperparameters. To do this, an imaginary sample size for the

root vertex needs to be chosen. This imaginary sample size is then propagated uniformly

across the edges of the CEG graph. By propagating the imaginary sample size in this way,

the stages closer to the root vertex will have larger Dirichlet prior hyperparameters and

smaller variances than those that are further away from the root vertex. To ensure that the

default prior setting does not have a large influence on the model, we choose weakly in-

formative priors by choosing the imaginary sample size starting at the root to be small –

typically chosen as the maximum number of outgoing edges from any vertex in the graph

(see e.g. Barclay et al. (2015) and Collazo et al. (2018)). However, in this default setting,

vertices representing the same stage in the CEG might not have the same prior setting as

shown in the example below.

Example 3.14 (Default hyperparameter setting example). Consider the CEG graph given

in Figure 3.5. Here we have two vertices coloured in orange which represent the same stage

but are not in the same position. We can see here how using a default prior setting gives

them different Dirichlet priors with parameters (0.5, 0.5) and (1, 1).

Two vertices representing the same stage having different priors within the CEG

may be problematic as conjugate parameter updating and calculation of the model marginal

likelihood (described in Section 3.2.1), are performed over each stage. Hence, care must be

taken when specifying priors over stage parameters of a CEG under a default setting.

The approaches described above can also be used to set priors over the situations of

the event tree. In the case of model selection, we set priors assuming that each situation in

the event tree is a singleton stage. Model selection algorithms can then be used to identify

the non-trivial stages as described in the following subsection.
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Figure 3.5: Default hyperparameter setting: the numbers represent the units of the imagi-
nary sample arriving at the vertices (inside the circles) and passing along the edges (above
the directed edges).

3.2.3 Model Selection

CEG model selection algorithms take as input the event tree of the process and output

the staged tree for the process. A CEG is completely specified by its staged tree and the

parameters over the staged tree ΦS (see Theorem 4.9 in Chapter 4). CEG model selec-

tion algorithms devised thus far are score-based and they fall under the two approaches of

agglomerative hierarchical clustering (AHC) (Freeman & Smith, 2011a) and dynamic pro-

gramming (Silander & Leong, 2013; Cowell & Smith, 2014). Under both these approaches,

we aim to maximise the log marginal likelihood score Q(C) of the CEG structure as given

by Equation 3.8. The staged tree for a given process can be obtained by identifying the

collection of stages that partition the situations of its event tree. Thus, finding the highest

scoring CEG structure is equivalent to finding the partition of its underlying event tree’s

non-leaf vertices into clusters (where each cluster is equivalent to a stage) that maximises

its log marginal likelihood Q(T ).

The pseudo-code for the AHC algorithm as it applies to model selection in CEGs is

given in Algorithm 1. The AHC algorithm uses a bottom-up hierarchical clustering method-

ology beginning with the coarsest clustering treating each situation as a singleton cluster

and successively merging pairs of stages until the log marginal likelihood score cannot be

improved further. Thus, AHC is a local greedy search algorithm which aims to maximise

the overall score by finding the next move that leads to a maximum increase in the score.

Clearly, this has a downside of searching only a limited area of the model search space and

can get stuck in a local maxima. For instance, a stratified CEG for a certain ordering of

4 binary variables – each with the same set of edge labels – has approximately 1.38 × 109

possible stagings but the AHC evaluates only 560 of them at most.

Note that Freeman and Smith (2011a) and in fact several other papers in the CEG

42



literature do not require that two situations have matching edge labels to be in the same

stage. Thus, the AHC algorithm would check the log Bayes Factor of every pair of stages

with the same number of outgoing edges irrespective of their edge labels. This results in

an extremely large model search space with cubic time complexity while not necessarily

adding more value to the interpretability of the stages thus obtained. Hence, we restrict the

search space here by also requiring that situations in the same stage also have the same set

of edge labels (which is consistent with the definition of stages presented in Section 3.1.1).

Algorithm 1: AHC algorithm
Input : Event tree T , data y, root equivalent sample size ᾱαα0.
Output: Collection of stages U, log marginal likelihood score of the MAP

CEG C found by the algorithm.
1 Initialise an array stages of each situation si in T .
2 Initialise an array data of yi for each situation si in T obtained from y.
3 Initialise an array priors of αααi for each situation si in T obtained by the mass

conservation property from ᾱαα0.
4 Set score as the log marginal likelihood score given in Equation 3.8.
5 Set indicator ← 1.
6 while indicator , 0 do
7 for every pair of stages in stages with same number of outgoing edges

and equivalent set of edge labels do
8 Calculate the log BF as given in Equation 3.10 comparing the

structures which merge them together into one stage and keep them
apart respectively, all other stages being equal.

9 if no such pair exists then
10 indicator ← 0
11 for pair ui and u j with the largest log BF score do
12 if log BF(ui, u j) > 0 then
13 score← score + log BF(ui, u j)
14 Update stages to add stage ui⊕ j and remove stages ui and u j.
15 Update data to add yi⊕ j = yi + y j and remove yi and y j.
16 Update priors to add αααi⊕ j = αααi +ααα j and remove αααi and ααα j.
17 else
18 indicator ← 0
19 return stages, score

For the stratified class, assuming that no two variables have the same set of edge

labels, running AHC on the entire event tree simplifies to running AHC on each layer of

the event tree independently where a layer k is defined as all the vertices at distance k from

the root vertex. In the stratified class, vertices in the same layer are associated with the

same variable. This approach of decomposing a larger problem (identifying stages in the

entire event tree) into smaller problems (identifying stages within a given layer) is known as
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dynamic programming. Silander and Leong (2013) and Cowell and Smith (2014) describe

how the dynamic programming approach can be applied to obtain the globally optimal

CEG structure from an XXX(I)-compatible event tree. The pesudo-code for this is provided

in Algorithm 2. The number of partitions to be evaluated for a layer with k vertices is

given by the kth Bell number (Cowell & Smith, 2014). Finding the best partition quickly

becomes infeasible as the event tree considered grows larger. However, the dynamic pro-

gramming approach itself could be further explored with a different heuristic-based parti-

tioning scheme for scaling to larger problems. Unlike the AHC algorithm, the dynamic

programming approach does not need a fixed strict total ordering of the variables and the

best variable ordering can be found as described in Silander et al. (2010) and Cowell and

Smith (2014). All the examples considered in this thesis have an a priori determined strict

ordering of the variables or events for the process.

Algorithm 2: Dynamic programming
Input :XXX(I)-compatible event tree T for some permutation I, data y, root

equivalent sample size ᾱαα0.
Output: Collection of stages U, log marginal likelihood score of the MAP

CEG C found by the algorithm.
1 Initialise an array stages of each situation si in T .
2 Initialise an array data of yi for each situation si in T obtained from y.
3 Initialise an array priors of αααi for each situation si in T obtained by the mass

conservation property from ᾱαα0.
4 Set score← 0.
5 for each layer in T do
6 By calculating the score for every possible partition, find the optimal

partition of the vertices in the layer that maximises the log marginal
score given in Equation 3.8 of the stages in that layer.

7 Update stages to add the optimal partition of the vertices in the layer.
8 Set Q(layer) as the log marginal score of the layer with the optimal

partition.
9 score← score + Q(layer)

10 return stages, score

3.3 Probability Propagation

In this section, we discuss propagation of probabilities in a CEG. Probability propagation

refers to the methodology of efficiently revising the various conditional probabilities of a

model given the observation of one or more events. Under a naı̈ve approach, this could

be accomplished by obtaining the full joint distribution of the model and then revising the
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probabilities using Bayes’ Rule conditional on the observations (see e.g. Collazo et al.

(2018)). However, such an approach is prohibitive as it requires storing a large number

of computations for even moderately large processes. In the case of CEGs, it is easy to

do much better than this naı̈ve approach. For instance, propagation can be performed, in a

straightforward but inefficient way, on the underlying event tree of the CEG (see Section 5.2

of Collazo et al. (2018)). However, this does not scale well and leads to several redundant

calculations as it does not exploit the stage structure of the process.

Propagation algorithms aim to simplify this process by directly working with the

known or estimated conditional probabilities of the model for certain types of compatible

observations (the meaning of “compatible” is discussed below with reference to CEGs).

Propagation of probabilities in this sense is analogous to the idea of Bayesian inference.

The key difference is that the propagation algorithm takes as input a given CEG with point

estimates of the conditional transition probabilities. Later in the section we discuss more

about these point estimates and put them within the context of a Bayesian framework. These

propagation algorithms can be used to perform inference for one individual or a set of

exchangeable individuals – drawn from the population to whom the CEG applies – for

whom the compatible observations have been observed.

In this section we shall review the CEG probability propagation algorithm based

on Thwaites et al. (2008). This algorithm along with other special cases and lazy short-

cuts are discussed in great detail in the thesis of Dr Peter Thwaites (Thwaites, 2008). This

probability propagation algorithm was designed to propagate information associated with

the observation of a set of transitions within a CEG. It does not consider the propagation of

any temporal information that might have been observed associated with these transitions

(for example, how long the individual spent at vertex v before transitioning along its ith

edge). In Chapter 5, we present dynamic CEGs which evolve over continuous time with

conditional holding time distributions defined over its edges. In the same chapter (in Section

5.6) we present a non-trivial novel extension of the propagation algorithm reviewed here

such that it can also propagate temporal observations of holding times at various vertices of

a continuous time dynamic CEG.

We now set up some terminology used with reference to propagation in this thesis.

Recall that an “event” refers to the reason for a transition from one vertex to another and

event descriptions are provided by edge labels in a CEG. Vertices in the graph of the CEG

represent the possible states an individual might experience within the process. In this way,

knowledge of the edge(s) traversed by an individual in the CEG graph is informative of the

vertex that individual might be in. Let evidence E refer to the observed set of edges or

vertices traversed or occupied by an individual in the CEG. This type of evidence may be

referred to as positive evidence where we observe that some event has occurred or some
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state has been visited as compared to negative evidence where we observe that an event has

not occurred or a state has not been visited. We shall allow negative evidence to be included

in E by casting it as uncertain positive evidence. Recall here that certain evidence is where

observations occur with probability one and uncertain evidence is where we have a non-

trivial probability distribution associated with a possible set of events or states. Further, we

shall assume that the probabilities associated with the elements in a given set of uncertain

evidence are always equal. Note that these properties of evidence were not explicitly set out

in Thwaites (2008) and Thwaites et al. (2008) but we find it beneficial to be precise about

this, especially when we address incorporating temporal evidence later in Chapter 5.

Example 3.15 (Infection example continued). Suppose we observe that an individual is

not from the community, this information can be included in E as this individual is either

in vertex w1 or w2 in the graph of the CEG in Figure 3.4 with equal probability.

The final property of the observations in our evidence E is that each is a point

observation. This implies that an observation was recorded at a specific point of time rather

than over an interval of time. Within a CEG where we are not yet discussing holding times

for the various situations, this property is of little importance. We shall discuss this further in

Chapter 5 once we have introduced the concept of holding times within the CEG framework.

See, for example, Chan and Darwiche (2005), Saria et al. (2007), and Sturlaugson and

Sheppard (2016) and the references therein for their treatment of different types of evidence

in inference for BNs, DBNs and CTBNs.

Assume that we have a CEG C = (V(C), E(C)) where the conditional transition

probabilities are known. Let E be the set of observed evidence. The observation of a vertex

v ∈ V(C) being visited reduces the possible root-to-sink paths that the individual or group of

individuals might have traversed to Λ(v) which is the set containing all the root-to-sink paths

in C passing through vertex v. Similarly, the observation of an edge (v, v′, l) ∈ E(C) being

traversed reduces the possible root-to-sink paths to Λ(v, v′, l) which is the set containing all

the root-to-sink paths in C passing through the edge (v, v′, l). Thus, with evidence E , we

can update the topology of the CEG graph to remove the paths, if any, which are rendered

impossible conditioned on the elements of E . This corresponds to the revised probability

of a path being zero conditioned on E . Denote by Λ(E ) the possible root-to-sink paths in

C conditioned on evidence E . Notice that Λ(E ) is precisely the union of paths in Λ(e) and

Λ(v) for every edge e and vertex v in E .

With this we can define what we shall call an E -reduced graph of the CEG C.

Note that this is analogous to the transporter CEG in Thwaites et al. (2008) although it

was defined for a now disused representation of CEGs where vertices in the CEG which

represented the same stage set but were not in the same position set were connected by an

undirected edge instead of being assigned the same colour, as we do now.
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Definition 3.16 (E -Reduced Graph). An E -reduced graph for a CEG C with evidence E

is the graph of C induced by the edges in Λ(E ). The E -reduced graph inherits only the

graphical structure and colouring from C and not the probabilities.

Note that the E -reduced graph after being populated with conditional transition

probabilities generally defines the graph of some CEG. As we have defined the evidence E

to be in terms of the vertices and edges observed, the E -reduced graph is typically sufficient

for propagating this evidence. We discuss below when this might not be the case.

If the evidence E is allowed to contain observations of the (potential) paths traversed

by an individual or a group of exchangeable individuals, then the E -reduced graph may be

inappropriate for performing propagation. The reason for this is that the set of root-to-sink

paths in the E -reduced graph here may not be equivalent to the paths in Λ(E ). The two

sets are unequal when conditioning on evidence E destroys some conditional independence

relations in the original CEG C. In this case, the CEG obtained by embellishing the E -

reduced graph is not representative of the process conditioned on the evidence E .

Example 3.17 (Infection example continued). Consider the CEG of the infection process

given in Figure 3.4. Suppose that we observe that a community-dwelling individual has

either been infected by strain 1 and received treatment 1 or has been infected by strain 2

and received treatment 2. We can write this evidence as

E = ({((w3,w8, Strain 1), (w8,w9, Treatment 1)),

((w3,w8, Strain 2), (w8,w14, Treatment 2))})

where the elements within {·} indicate uncertain evidence. The E -reduced graph of this

CEG is shown in Figure 3.6. It is clear that the E -reduced graph does not represent the

process conditioned on the observed evidence E as it contains the following root-to-sink

paths in addition to those in Λ(E ):

((w0,w3, Community), (w3,w8, Strain 1), (w8,w14, Treatment 2), (w14,w∞, Recovery));

((w0,w3, Community), (w3,w8, Strain 1), (w8,w14, Treatment 2), (w14,w∞, Death));

((w0,w3, Community), (w3,w8, Strain 2), (w8,w9, Treatment 1), (w9,w∞, Recovery));

((w0,w3, Community), (w3,w8, Strain 2), (w8,w9, Treatment 1), (w9,w∞, Death)).

Further, it fails to represent the following conditional independence relationship:

XT 6y XS |E .
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Figure 3.6: The E -reduced graph of the CEG for the evidence described in Example 3.17.

Thus not all kinds of evidence can be propagated through the CEG. Propagation in

BNs faces a similar problem when the evidence destroys some conditional independence

relations in the BN. The reason for these problems is that typically propagation algorithms

perform local updates that rely on the conditional independence structure of the graph. This

leads us to the concept of intrinsic evidence.

Definition 3.18 (Intrinsic Evidence). Evidence E is said to be intrinsic to a CEG C if the

set of root-to-sink paths in its E -reduced graph is equivalent to Λ(E ).

By defining our evidence E to be in terms of the vertices and edges observed, we

ensure that our evidence is always intrinsic (Collazo et al., 2018).

Assume that our evidence E is intrinsic. Propagating the evidence E through the

CEG C is now equivalent to populating the E -reduced graph with conditional transition

probabilities using the propagation algorithm. Thus clearly, observing some intrinsic ev-

idence results in a graph that is, in the worst case, isomorphic to the original CEG and

in most cases, smaller (in terms of number of vertices and edges) than the original CEG.

In other words, observing evidence reduces the complexity of the CEG. This is the key

property of propagation in a CEG that makes it more efficient compared to BN propagation.

There is another optional step of pre-processing that may be applied to the E -

reduced graph before using the CEG propagation algorithm on it. Recall that by construc-

tion, no two vertices in a CEG represent the same position set, i.e. no two vertices in the

CEG have isomorphic rooted subgraphs. However, two vertices in the E -reduced graph

might have isomorphic rooted subgraphs after removal of the edges and vertices rendered

impossible by the evidence E . These vertices can then be merged to obtain the minimal

E -reduced graph. This does not affect the set of root-to-sink paths in the E -reduced graph.
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While the E -reduced graph does not need to be minimal for the purposes of the propaga-

tion algorithm, we could argue that obtaining the minimal representation of the E -reduced

graph – either before or after performing the propagation algorithm – results in a graph that

is a CEG as per definition. Without the minimal representation, the E -reduced graph will

be coloured to represent the stage sets and will be populated with conditional transition

probabilities but each of its vertices will not represent a unique position set.

The pseudo-code for the two-pass backward-forward message-passing propagation

algorithm for a CEG C and intrinsic evidence E as described in Thwaites et al. (2008) is

presented in Algorithm 3. This algorithm has two main steps: a backward step to calcu-

late the potentials and emphases, and a forward step which normalises the potentials to

obtain the updated conditional transition probabilities. Denote the probability of occupy-

ing a vertex v ∈ V(C) by p(v) = p(Λ(v)) and the probability of traversing an edge (v, v′, l)

by p(v, v′, l) = p(Λ(v, v′, l) |Λ(v)). Let V−1(v) denote the vertices whose emanating edges

terminate in v, and E−1(v) denote the edges terminating in v in the CEG C. Note that p(.)

refers to probabilities in C and p̂(.) to the updated probabilities in its E -reduced graph.

Algorithm 3: CEG propagation algorithm
Input : Conditional transition probabilities and the minimal E -reduced

graph for a CEG C and intrinsic evidence E .
Output: Updated conditional transition probabilities.

1 Set A← ∅, B← {w∞}, Φ(w∞)← 1.
2 while B , {v0} (the root vertex) do
3 for v j ∈ B do
4 for vi ∈ V−1(v j) do
5 for e ∈ E(vi) ∩ E−1(v j) do
6 if e ∈ Λ(E ) then
7 τe ← p(e) · Φ(v j)
8 else
9 τe ← 0

10 A← A ∪ {e}
11 if E(vi) ⊂ A then
12 Φ(vi) =

∑
e∈E(vi) τe

13 B← B ∪ {vi}

14 B← B\{v j}

15 for vi ∈ V(C) do
16 for e ∈ E(vi) ∩ Λ(E ) do
17 p̂(e) =

τe

Φ(vi)
18 for e ∈ E(vi)\Λ(E ) do
19 p̂(e) = 0
20 return Updated conditional transition probabilities p̂(.)
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By populating the edges in the minimal E -reduced graph with the updated condi-

tional transition probabilities, we obtain the E -reduced CEG which results from propagat-

ing intrinsic evidence E through the original CEG C. In Chapter 5 we revisit this algorithm

and extend it to propagate temporal evidence.

Finally, we discuss probability propagation in CEGs when the conditional transition

probabilities are estimated. Within the setting where these probabilities are estimated, we

can substitute the known probabilities in the propagation algorithm above with the posterior

means of the estimated conditional transition probabilities. Consider a vertex w in a CEG

C with estimated posterior distribution for parameter vector θθθ given by Dir(ααα∗). Suppose

that we observe an intrinsic event A that results in certain edges emanating from vertex w

having a probability zero of being traversed. Conditioned on event A, the updated parameter

subvector θ̂θθA ⊂ θθθ for vertex w has a Dir(ααα∗A) distribution where ααα∗A ⊂ ααα∗ (Collazo et al.,

2018). Further, observe that the posterior mean vector of θ̂θθA can be obtained as follows

E[θ̂θθA] =
ααα∗A∑
ααα∗A

=
ααα∗A∑
ααα∗

∑
ααα∗∑
ααα∗A

=
E[θθθA]∑
E[θθθA]

. (3.11)

In a similar way, provided that the individual or group of individuals for whom the

evidence has been observed have been drawn randomly from our population, the revised

probabilities obtained from the propagation algorithm using the posterior conditional means

are the expectations of the updated posterior conditional transition distributions for these

individuals (Collazo et al., 2018).

3.4 Dynamic Variants of CEGs

A CEG, as described thus far, has an underlying event tree which is finite. Recall that a

CEG is obtained through a colouring and transformation of its underlying event tree. An

event tree supposes a strict total ordering of the events along each of its root-to-leaf paths.

The CEG inherits this strict total ordering of the events along each of its root-to-sink paths.

Hence, a CEG – even if it has an underlying finite event tree – cannot typically be considered

to be “static”. This is in contrast to BNs where BNs provide static representations of the

state of a system at a fixed point in time, and its dynamic variants such as DBNs and

CTBNs represent the longitudinal evolution of a system though discrete and continuous

time respectively.
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We shall say that a CEG is dynamic when its underlying event tree is infinitely

large, we otherwise call it a CEG or a vanilla CEG (so as to not confuse with the CEG

family whenever it is ambiguous). Thus, the atoms of the event space defined by the event

tree of a dynamic variant of a CEG are infinite. In this section, we review the two main

dynamic variants of CEGs: discrete time dynamic CEGs (DCEGs) and extended DCEGs as

presented in Barclay et al. (2015). In particular, these dynamic variants of CEGs allow for

individuals to experience an event more than once. Note that Freeman and Smith (2011b)

developed a dynamic extension of CEGs which do not have underlying infinite event trees.

This dynamic extension has a fixed underlying finite event tree but the stage set of the event

tree and hence, its staged tree and CEG are allowed to change across each discrete time

step. It analyses how symmetries within a process change over time.

The discrete time DCEG (or simply, the DCEG) as presented in Barclay et al. (2015)

is the simplest dynamic extension of the vanilla CEG. It models a discrete state space lon-

gitudinal process. Similar to the vanilla CEG, it does not involve any explicit modelling of

holding times at its various states (vertices). The implicit assumption in DCEGs is that the

holding times at its various states are governed by a geometric distribution (a detailed dis-

cussion is presented in Section 5.1). This can be seen by the relationship between DCEGs

and Markov chains described in Barclay et al. (2015). Stages and positions are defined for

DCEGs exactly as they are for CEGs.

Definition 3.19 (Dynamic Chain Event Graph). A discrete time dynamic chain event graph

(DCEG) D = (V(D), E(D)) is defined by the triple (S,W,ΦS), where S has an infinitely

large vertex set, with the following properties:

• V(D) = R(W) ∪ w∞ if L(S) , ∅ and V(D) = R(W) otherwise, where R(W) is the

set of situations representing each position set in W, w∞ is the sink vertex and for

w ∈ V(D), θD(w) = θS(w). Vertices in R(W) retain their stage colouring.

• Situations in S belonging to the same position set in W are contracted into their

representative vertex contained in R(W). This vertex contraction merges multiple

edges between two vertices into a single edge only if they share the same edge label.

• Leaves of S, if any, are contracted into sink vertex w∞.

It is not necessary that the infinite event tree underlying a DCEG has any terminating

root-to-leaf walks. In fact, it may not have any leaves at all. In this case the corresponding

DCEG would not have a sink vertex. Further, unlike vanilla CEGs, the graph of a DCEG

may have directed cycles and it may contain loops. While the definition above does not

require V(D) to be finite, Barclay et al. (2015) considers only DCEGs whose graphs have

a finite vertex set. The DCEG class is particularly useful for modelling processes where
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observations are recorded at regular discrete time intervals (e.g. hourly, weekly or monthly).

Barclay et al. (2015) show that DBNs are a special subclass of DCEGs. We note here that

Collazo and Smith (2018a, 2018b) explored a special class of DCEGs called the N time-

slice DCEG which is closely associated with the N time-slice DBN. An N time-slice model

is one where the dependence structure has an Nth-order Markov property, i.e. probabilities

associated with events in a time-slice t ≥ N are dependent only on the events that take place

in the previous N time-slices.

It is of particular interest to study dynamic variants of CEGs which allow holding

times to be non-geometric (in case of discrete time processes) or non-exponential (in case

of continuous time processes). Not only does this enable us to model processes where ob-

servations may not be recorded at regular time intervals (for instance, observations may be

recorded as events occur such as symptoms being recorded in a patient’s medical history as

they develop) but it also enables us to incorporate important temporal information explicitly

within the model. In several domains such as medicine, reliability engineering and law, it is

of interest to study what happens next as well as when it happens. The 2020/21 pandemic

is a good example of such a process. Extended DCEGs are the only members of the CEG

family thus far which evolve in continuous time and explicitly model holding time distribu-

tions for each event. They do so by associating a conditional holding time random variable

with each edge. A holding time along edge (v, v′, l) indicates how long an individual spends

in the state represented by situation v before transitioning along this edge to situation v′.

We now define the extended DCEG exactly as presented in Barclay et al. (2015).

Definition 3.20 (Extended Dynamic Chain Event Graph (Barclay et al., 2015)). An ex-

tended DCEG D = (V(D), E(D)) is a DCEG with no loops from a position into itself and

with conditional holding time distributions conditioned on the current stage, u, and the next

edge eu j, to be passed through:

Fu j(h) = p(Hu j ≤ h|u, eu j)

for h ≥ 0, u ∈ U and where j indexes the jth edge emanating from u, j = 1, . . . ,mu. Hence,

Fu j(h) describes the time a unit stays in any position w merged into stage u before moving

along the next edge ew j.

The extended DCEG is a useful subclass especially when we are dealing with pro-

cesses that have observations recorded at irregular times. Barclay et al. (2015) presented a

semi-Markov representation of the extended DCEG for the special case where the graph of

the extended DCEG is a simple graph. This enables us to use well-developed semi-Markov

technologies for these models.

However, the extended DCEG subclass as presented in Barclay et al. (2015) has
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some critical limitations. The focus of Barclay et al. (2015) was largely on extending the

CEG with the discrete time DCEG class described earlier. The work presented there on

extended DCEGs was preliminary. The extended DCEG class and methodologies for this

class were not fully explored. Nor were any real-world examples explored in detail. From

the definition above, we can see that the extended DCEG was presented as an extension of

the DCEG class. Hence, the definition of the extended DCEG builds directly on that of a

DCEG. This does not clearly describe how the concept of holding times is incorporated with

stages and positions which makes it difficult to understand how a modeller should proceed

to construct such an extended DCEG starting from the event tree of a process.

Further, in Barclay et al. (2015), it is assumed under a time-homogeneity assumption

that the conditional holding time distributions for two situations are the same whenever

they belong to the same stage set. This is a very prohibitive assumption as it excludes

the possibility of two situations sharing equivalent conditional transition probabilities but

having different holding time distributions. For example, the time it takes an individual to

transition from being susceptible to infected could be dependent on the strain of the virus

to which they were exposed even if their probability of being infected by either strain is the

same. In Chapter 5 we present a general class of continuous time DCEGs (CT-DCEGs) that

contains extended DCEGs as a special case. Another subclass of this general CT-DCEG

class, known as the reduced DCEG, is developed and applied to a policing application in

Chapter 6.
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Chapter 4

Non-Stratified Chain Event Graphs

We reviewed stratified CEGs in Chapter 3 which contain discrete BNs as a special case. We

begin this chapter by motivating the class of non-stratified CEGs in Section 4.1. Here we

discuss the type of issues that result in processes having non-product event space structures

and demonstrate how these can be easily accommodated within the event tree framework. In

Section 4.2 we formally define a non-stratified CEG and discuss why an event-based, rather

than a variable-based, formulation is more appropriate for this class. In Section 4.3 we then

present a general algorithm with an optimal stopping criterion to construct a CEG from a

staged tree irrespective of whether it is stratified or non-stratified. Here we also prove that

no information is lost in the transformation of a staged tree into a CEG. This result has been

assumed in the CEG literature so far but a formal proof had not been presented. We next

describe in Section 4.4 how CEG model selection algorithms (see Section 3.2.3), developed

primarily for the stratified class, can be adapted in a straightforward manner to apply to

the non-stratified class. In Section 4.5 we present an application of the non-stratified CEG

class to a simulated dataset of a public health intervention. We conclude with a discussion

in Section 4.6.

4.1 Motivation and Introduction

To motivate the importance of the non-stratified class of CEGs, we introduce here a complex

intervention designed to reduce fall-related injuries in the elderly (here on referred to as the

falls intervention) which was presented in Eldridge et al. (2005). Note that intervention here

refers to policies developed to improve physical and/or mental health of individuals within

a population rather than the “intervention” of setting a variable X to a value x denoted by

do(X = x) within Judea Pearl’s causal algebra (Pearl, 2009).

We first describe the falls intervention as presented in Eldridge et al. (2005) along
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with the need for such an intervention. According to the World Health Organisation (World

Health Organization, 2018): “A fall is defined as an event which results in a person coming

to rest inadvertently on the ground or floor or other lower level.” Falls-related injuries are

a serious problem among the elderly with consequences ranging from fear of falling and

fractures to death. Such injuries may contribute to increased morbidity, reduced mobil-

ity, possible hospitalisations and increased costs of health. According to NICE guidelines

(NICE: Guidance and Guidelines, 2013), 30% of people older than 65 and 50% of peo-

ple older than 80 fall at least once a year. The falls intervention was designed to enhance

assessment, referral pathways and treatment for high risk individuals aged over 65 years

living in the community as well as those in care homes, nursing homes and hospitals who

have a substantial risk of falling. Under this intervention, a certain proportion of individuals

aged 65+ would be assessed. Assessment would be carried out as per the recommendations

in the Falls Risk Assessment Tool (FRAT) (Nandy et al., 2004) which classifies an indi-

vidual as low or high risk based on factors such as their history of falling in the previous

year, number of prescription medicines taken per day, diagnosis of stroke or Parkinson’s

disease etc. Those assessed to be at a high risk could then be referred to a falls clinic for an

advanced assessment. It is assumed that all those who are referred, 50% of other high risk

individuals, and 10% of low risk individuals would receive treatment. Further, it is assumed

that those who are not assessed would receive neither referral nor treatment. The event tree

for this process is shown in Figure 4.1. Note here that the choice of events to represent this

process was informed by the tree-like description of the intervention presented in Figure 4

of Eldridge et al. (2005).

For our discussion we find it helpful to define variables under which each of the

events occur. Consider the variable set XXX = {XA, XRi, XRe, XT , XF} where XA indicates

whether an individual aged 65+ is assessed or not; XRi indicates their risk level as high

or low; XRe indicates whether they are referred; XT indicates whether they are treated; and

XF indicates whether they have a fall. By the design of the intervention, we have that

p(XRe = Not referred|XRi = Low) = 1; i.e. we do not observe any low risk individuals who

are referred, irrespective of the sample size. Similarly, p(XT = Treated|XRe = Referred) = 1.

Observe that p(XRe = Not referred) , 1 and p(XT = Treated) , 1. This implies that the

categories of XRe = Referred and XT = Not treated are not redundant for all groups of

individuals as can be clearly seen in Figure 4.1.

The phenomenon observed here is known as a structural zero. A structural zero

refers to observing zero frequencies for a count variable or a category of a categorical vari-

able when a non-zero observation is a logical impossibility (e.g. days or amount as low,

medium, high of alcohol consumption by teetotallers). This is in contrast to a sampling

zero where a zero frequency is observed due to limitations of sampling (see e.g. Mohri
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Figure 4.1: Event tree for the falls intervention.

and Roark (2005)). Inclusion of structural zeros within a model leads to storage of redun-

dant information, and may bias the inference (Manrique-Vallier & Reiter, 2014). Within

a graphical modelling framework, explicit exclusion of structural zeros within the graph

of the model is also useful from the perspective of representation. Sampling zeros, on the

other hand, must not be excluded from the model. Determining whether the observation of a

zero frequency for an event is a structural or a sampling zero is dependent on the context of

the application and generally cannot be determined solely from the data. Mohri and Roark

(2005), however, describe how standard statistical criteria such as mutual information and

the log odds ratio may be used to determine whether zero observations of a sequence of two

or more words within a large corpora of text can be considered to be structural zeros.

Fortunately within an event tree, structural zeros can be easily accommodated by

simply deleting the edges where they occur. By having an edge labelled “Treated” but not

one labelled “Not treated” from situation s7 in Figure 4.1, it is clear that those who are

assessed, classified as high risk and have been referred are always treated. In this way,

structural zeros are explicitly represented within the topology of the event tree. A CEG
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inherits this property as it is a transformation of its underlying event tree (see Section 3.1.1).

In contrast, in a BN, these structural zeros would be hidden within its conditional

probability tables (CPTs). To see this, we hypothesise the BN structure in Figure 4.2(a) for

the falls intervention based on the dependencies built into the intervention by design. The

table in Figure 4.2(b) gives the CPT for the variable XRe which shows how these structural

zeros are encoded by BNs.

Figure 4.2: (a) Hypothesised BN for the falls intervention; (b) CPT for variable XRe.

Just as in the falls intervention example, processes within several domains such as

public health, forensic science, policing and reliability theory may have structural zeros

present by design. Furthermore, we observed another interesting phenomenon that occurs

frequently in such domains and contributes to processes having a non-product event space.

We introduce this phenomenon through the modification of the falls intervention below.

Consider a new variable XRev which indicates the revised risk of an individual af-

ter they have received treatment as high or low. Clearly, this variable is not defined for

those who did not receive any treatment. Thus, for a subgroup of our population – pre-

cisely for those who receive treatment – the defining variables for this process are given by

X′X′X′ = {XA, XRi, XRe, XT , XRev, XF} whereas for those who do not receive treatment, these are

given by XXX. This phenomenon is known as structural missing values. Structural missing

value are observations which are missing as they are not defined for a subset of the indi-

viduals (e.g. variables relating to post-operative health of individuals who had the illness

but weren’t operated). Similar to structural zeros, inclusion of structural missing values in

a model leads to storage of redundant information and may bias inference. Care must be

taken here to ensure that exclusion of any missing values is done after confirming that they

are indeed structural. For handling of non-structural missing values in a CEG, see Barclay

et al. (2014).

Encoding structural missing values within an event tree is straightforward. Florets

representing structural missing values are simply excluded from the event tree. For instance,
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while there would be a floret representing XRev at the end of the directed edges labelled

“Treated” in Figure 4.1, there would be no analogous florets at the end of the directed edges

labelled “Not treated”. Just as with the structural zeros, CEGs inherit the ability to express

structural missing values from their underlying event trees. In contrast, structural missing

values cannot be explicitly encoded within a BN model as it assumes an event space with a

product space structure (see Section 2.3.2).

We have illustrated the ease with which event trees and their corresponding CEGs

can encode structural zeros and structural missing values (collectively referred hereafter as

structural asymmetries). However, it is only the non-stratified class and not the stratified

class that can handle these structural asymmetries. Observe that the stratified class by defi-

nition does not even accommodate event trees and CEGs where the ordering of the variables

may not be the same across the tree (e.g. individuals presenting with a certain set of risk

factors may be given treatment before being referred to a falls clinic for further support,

whereas this order might be swapped for others who have a different set of risk factors).

Further observe that the stratified class is in fact a special case of the non-stratified class.

Thus far, most of the CEG research has focused on the stratified class due to its

correspondence to BNs. However, the falls example demonstrates that public health inter-

ventions may belong to the non-stratified class. Furthermore, we conjecture that structural

asymmetries are the norm rather than the exception when it comes to processes that are best

described through an unfolding of events as is the case in several domains such as medicine,

risk analysis, policing, forensic science, law, ecology, and reliability engineering. This ne-

cessitates the development of the non-stratified class of event trees and CEGs.

4.2 Non-Stratified CEGs

As described in the previous section, event spaces that have a non-product space struc-

ture may arise due to structural asymmetries. Unlike BNs, the CEG framework can easily

model such processes and can explicitly represent these asymmetries within its graph. We

now present a simple definition of non-stratified CEGs – the class of CEGs that can model

asymmetric processes.

Definition 4.1 (Non-Stratified CEG). A CEG C is said to be non-stratified when its under-

lying event tree T is notXXX(I)-compatible whereXXX is the set of variables to which the events

of T belong andXXX(I) is any permutation of the variables inXXX.

From this definition, we can see that the class of non-stratified CEGs is extremely

large. It generalises the class of stratified CEGs. In particular, this implies that the model

search space of a non-stratified CEG can be very large. In Section 4.4 we introduce some
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Figure 4.3: Event tree for the epilepsy example.

simplifying assumptions to restrict the model search space of non-stratified CEGs to make

model selection feasible.

We next illustrate, through an example, that for non-stratified CEGs, the event-based

and variable-based descriptions of the process are not equivalent.

Example 4.2 (Event-based description example). Consider a study of individuals with

epilepsy who have not achieved a 12-month remission or any significant reduction of seizures

after trying two anti-epileptic drugs. Further assume that these individuals suffer from focal

seizures, that is seizures that begin in a specific area (lobe) of the brain. These individuals

can now either opt for a treatment by another anti-epileptic drug or a surgery. After under-

going a surgery, the individuals might be able to achieve remission with or without taking

another anti-epileptic drug or they might not achieve remission. Suppose that the study

analyses the outcomes of the individuals based on these two options available to them.

Suppose that the event tree in Figure 4.3 describes this process.

It is clear that this process cannot be easily expressed with a variable-based de-

scription that generates an event space that admits a product space structure. To see this,

we could define the variables of interest to be the following

• a treatment variable XT = {Medication, Surgery};

• an outcome variable for those opting for medication XO1 = {Remission, No remission};

• an outcome variable for those opting for surgery XO2 = {Remission with medication,

Remission without medication, No remission}.

Here, XO1 is not defined for those who opt for surgery while XO2 is not defined for those who
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opt for another anti-epileptic drug. This results in structural missing values for variable

XO1 among those individuals at vertex s2, and for variable XO2 among those at vertex s1.

To force a variable-based description, we could combine XO1 and XO2 such that we use XO1

or XO2 for all individuals irrespective of whether they opt for another anti-epileptic drug or

a surgery. However, using only XO1 will loss of information (by not including the distinction

between remission with and remission without medication for those who opt for a surgery)

and using only XO2 will lead to structural zeros. Hence, for such asymmetric processes, an

event-based description is more appropriate.

4.3 Construction of Non-Stratified CEGs

We now consider the task of constructing the graph of a CEG C from any staged tree S

irrespective of whether it is stratified. Observe that model selection algorithms for the CEG

family take as input its underlying event tree and return its associated staged tree. That is,

the output of any model selection algorithm for a CEG is a collection of stages U for its

underlying event tree. In this section, we assume that we are only given the staged tree –

obtained either as an output of a model selection algorithm or elicited by domain experts –

from which we can deduce the collection of stages U. Recall that the vertex set of a CEG

C is given by V(C) = R(W) ∪ w∞ where R(W) is the set of situations representing each

position set in the collection of positions W, and w∞ is the sink vertex. Thus constructing a

CEG from its staged tree entails identifying the position sets of the staged tree followed by

iterative vertex contractions as defined in Section 3.1 to reduce V(S) to V(C).

4.3.1 Motivating the Construction Algorithm

The algorithm to construct a CEG C from a staged tree S is based on three key observations.

We first motivate these key observations and the steps of the construction algorithm with an

example.

Example 4.3 (Infection testing example). Consider the staged tree in Figure 4.4 which

shows a hypothesised example of testing for a certain disease available to individuals ex-

hibiting symptoms in two different settings: in hospitals and in the general community. For

simplicity, we assume here that the test is 100% sensitive and specific, and that we are only

interested in the outcomes related to the disease. We further assume that death can only be

caused by the disease in the time period considered.

From the staged tree for this process and through a simple visual analysis of the
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graph topology, we can see that its non-trivial stage and position sets are as follows

{s3, s11}, {s4, s5, s13}.

Figure 4.4: Staged tree for the infection testing example.

Key observation 1: Situations in the same position have isomorphic subtrees. Hence,

they are necessarily at the same distance from a leaf of the staged tree. Here distance is mea-

sured in terms of the maximum number of edges along any directed path from the situation

to any leaf vertex. This implies that a CEG can be obtained from its staged tree through a

backward iteration over its situations.

Example 4.4 (Infection testing example continued). As the first step of the backward iter-

ation, we combine all the leaves of the staged tree of the infection testing process into a

single sink vertex as shown in Figure 4.5.

For the second step of the backward iteration we merge together the situations that

are at a maximum distance of one edge from the sink vertex and are in the same stage as

this implies that are also necessarily in the same position. For step k of the backward itera-

tion, we wish to identify the situations that are in the same position and are at a maximum

distance of k − 1 edges from the sink vertex, for 2 ≤ k ≤ m where m is the length of the

longest root-to-leaf path in the staged tree of the process. We observe the next two steps of

the backward iteration for the testing example before stating our second key observation.

Example 4.5 (Infection testing example continued). At the second step of the backward

iteration, we consider the situations s4, s5, s12 and s13 as they are all at the maximum of
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Figure 4.5: First step of the backward iteration.

one directed edge away from the sink vertex. Of these, situations s4, s5 and s13 belong to

the same stage and so they are contracted into a single vertex as shown in Figure 4.6. At the

third step, we consider situations s3 and s11. From the staged tree of this process, it is clear

that s3 and s11 are in the same position and so they are contracted into a single vertex in the

third backward step. Observe that as the two situations are in the same position, they are

also in the same stage. Further, observe that their outgoing edges in Figure 4.6 which share

the same edge label terminate in the same vertex. Here, the edges labelled “positive” from

both vertices enter vertex w4+5+13, and the edges labelled “negative” from both vertices

enter the sink vertex. Figure 4.7 shows the third step of the backward iteration.

Figure 4.6: Second step of the backward iteration.

Key observation 2: At the kth step of the backward iteration, we consider the situ-

ations in the graph of the (k − 1)th step of the iteration that are at a maximum distance of

k − 1 directed edges from its sink vertex, for 2 ≤ k ≤ m. For any two of these situations to

be in the same position, the following must hold:
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Figure 4.7: Third step of the backward iteration.

• They are members of the same stage set;

• Their emanating edges with identical labels enter the same downstream vertex.

This result is proved in Theorem 4.7.

Example 4.6 (Infection testing example continued). For the fourth step of the backward

iteration we consider situations s1 and s2. They satisfy neither of the conditions described

in the second key observation. Hence, they are not in the same position and are retained

as separate vertices as shown in Figure 4.7. The fifth and final backward step only involves

the root vertex. Thus, Figure 4.7 shows the graph of the CEG of this process. Notice that

we first constructed this graph in the third step of the iteration.

Key observation 3: When the graphs obtained from two consecutive iterations are

isomorphic, the algorithm can be stopped and the graph thus obtained is the graph of the

CEG for the process.

This result is called the early stopping criterion and it is proved in Theorem 4.8.

4.3.2 CEG Construction Algorithm

We now formally present our algorithm as reported in Shenvi and Smith (2020a), which

given a staged tree S, progressively melds situations together according to the position

structure incrementally more distant from the leaves of the staged tree S. This produces a

sequence of coloured graphs G0 = S,G1, . . . ,Gm = C where m is the length of the longest

root-to-leaf path in S. Each graph in the sequence has the same set of root-to-leaf/sink

paths, that is G0Λ = G1Λ = . . . = GmΛ. Note that to describe the algorithm, we redefine path

for this subsection to be a sequence of tuples of the form (‘vertex colour’, ‘edge label’).
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The following relationship holds between graphs Gi and Gi+1 in the sequence:

|V(Gi)| ≥ |V(Gi+1)|, |E(Gi)| ≥ |E(Gi+1)|; i = 0, 1, . . . ,m − 1.

We specify our construction by writing the vertex and edge sets of each graph Gi as a

function of the vertex and edge sets of the graph Gi−1. Note that the vertices in Gi retain

their colouring from the graph Gi−1. Henceforth, we will say Gi = G j, i , j, whenever the

two graphs Gi and G j are isomorphic. Say that a vertex v is at a distance k from the sink

vertex w∞ (or equivalently, a leaf in a tree) if the longest directed path from v to the sink

(or a leaf) contains k tuples. Let V−k be the set of vertices in a given graph such that every

v ∈ V−k is at a distance of k from the sink vertex w∞ (or a leaf) of the graph. We describe

our iterative algorithm below.

Step 1: Initialisation. From G0 = S where S is the staged tree, define the following:

ν−1
M
= L(G0), ν+

1
M
= {w∞},

ε−1
M
= {e ∈ E(G0) : e = (v, v′, l) where v ∈ S (G0), v′ ∈ L(G0)},

ε+
1
M
= {σ1(e) : e ∈ ε−1 },

where σ1(e) = σ1(v, v′, l) M= (v,w∞, l). Graph G1 = (V(G1), E(G1)) where

V(G1) M= V(G0)\ν−1 ∪ ν
+
1 , E(G1) M= E(G0)\ε−1 ∪ ε

+
1 .

Step 2: Generalisation. To construct graph Gi from Gi−1, i ≤ m, proceed as follows:

1. Create a sub-collection Ui = {u1i, . . . , umii} informed by the collection of stages U

such that each situation v ∈ V−(i−1) belongs to only one set u ji ∈ Ui for some j =

1, . . . ,mi, and two situations v, v′ ∈ V−(i−1) belong to the same set u ji if and only if

there exists a stage u ∈ U such that v, v′ ∈ u. Thus, the collection Ui gives us the

stage structure for the vertices in V−(i−1).

2. Construct a collection U∗i such that each u ji ∈ Ui is replaced in U∗i by the sets

u1
ji, . . . , u

n ji
ji , n ji ≥ 1. Each situation v ∈ u ji belongs to only one set uk

ji for some

k = 1, . . . , n ji, and two situations v, v′ ∈ u ji belong to the same set uk
ji if and only if

there exists an edge (v′, v′′, l) ∈ E(Gi−1) for every edge (v, v′′, l) ∈ E(Gi−1). Thus, we

have that uk
ji ∩ ul

ji = ∅, k , l, ∪kuk
ji = u ji, and U∗i = ∪ j ∪k uk

ji. The collection U∗i
partitions the situations in V−(i−1) into its position sets (see key observation 2).

3. Define the following terms for each uk
ji, j = 1, . . . ,mi, k = 1, . . . , n ji,

ν−(uk
ji)
M
= uk

ji, ν+(uk
ji)
M
= {v} for some v ∈ ν−(uk

ji).
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The vertices in ν−(uk
ji) are contracted into a single vertex represented by ν+(uk

ji) in Gi.

We now define the following terms to enable us to construct the vertex and edge sets

of Gi,

ν−i
M
= ∪ j ∪k ν

−(uk
ji), ν+

i
M
= ∪ j ∪k ν

+(uk
ji),

ε
f
i
M
= {e ∈ E(Gi−1) : e = (v, v′, l) where v ∈ ν−i \ν

+
i },

εb
i
M
= {e ∈ E(Gi−1) : e = (v, v′, l) where v′ ∈ ν−i \ν

+
i },

ε−i
M
= ε

f
i ∪ ε

b
i , ε+

i
M
= {σi(e) : e ∈ εb

i },

where σi(e) = σi(v, v′, l)
M
= (v, v′′, l) in which v′′ ∈ ν+(uk

ji) for v′ ∈ ν−(uk
ji), k =

1, . . . , n ji. Setting V(Gi)
M
= V(Gi−1)\ν−i ∪ ν

+
i and E(Gi)

M
= E(Gi−1)\ε−i ∪ ε

+
i gives us

the graph of Gi

We now prove as Theorem 4.7 that the above construction of U∗i does in fact result in a

collection of positions of the vertices in V−(i−1).

Theorem 4.7. Given graph Gi−1, i ≤ m in the sequence of graphs transforming a staged

tree G0 = S to a CEG Gm = C, two situations v1, v2 ∈ V−(i−1) are in the same position if

and only if they belong to the same stage and for every (v1, v′, l) there exists a (v2, v′, l) in

Gi−1.

Proof. As the base case, consider the situations in V−1 in G1 where the leaves of S are con-

tracted into the sink vertex. Situations in V−1 are necessarily in the same position whenever

they are in the same stage as their rooted subtrees in S are florets. Additionally, all their

emanating edges terminate in the sink vertex.

To generalise, consider now the graph Gi−1 belonging to the sequence of graphs

converting a staged tree S into a CEG C, for i = 3, . . . ,m. All the vertices in V− j, j =

1, . . . , i − 2 in Gi−1 represent positions.

⇒ Given that two situations v1, v2 ∈ V−(i−1) are in the same position. We show that

(1) v1 and v2 belong to the same stage; (2) for every (v1, v′, l) there exists a (v2, v′, l) in Gi−1.

If v1 and v2 are in the same position, it is trivially true that they are also in the same

stage. Additionally, by the definition of a position, the subtrees rooted at v1 and v2, call them

Sv1 andSv2 in the staged treeS are isomorphic. Thus also, for every subtree rooted at a child

of v1 in Sv1 , there exists an isomorphic subtree rooted at a child of v2 in Sv2 . In fact, stages

by definition require that edges with the same estimated conditional transition probability

must also have the same edge label. Therefore, there necessarily exists a situation vch
2 along

edge (v2, vch
2 , l) such that the subtree rooted at vch

2 is isomorphic to the subtree rooted at

situation vch
1 which is along the edge (v1, vch

1 , l). Notice that vch
1 and vch

2 belong to the set

V−(i−2) in Gi−2. Since their rooted subtrees in S are isomorphic, they belong to the same
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position and are represented by a single vertex, say vch
1,2 in Gi−1. The edges (v1, vch

1 , l) in Sv1

and (v2, vch
2 , l) in Sv2 are represented by edges (v1, vch

1,2, l) and (v2, vch
1,2, l) in Gi−1. This result

extends to every (v1, v′, l) in Gi−1.

⇐Given that v1, v2 ∈ V−(i−1) inGi−1 belong to the same stage and for every (v1, v′, l)

there exists a (v2, v′, l) in Gi−1. We need to show that v1 and v2 are in the same position.

Recall that two situations are in the same position when the subtrees rooted at these

vertices in S are isomorphic. Since v1 and v2 are in the same stage, they have the same

number of emanating edges and also, the edges from v1 and v2 which share the same edge

label have the same estimated conditional transition probability. Consider edges (v1, vch
1,2, l)

and (v2, vch
1,2, l) emanating from situations v1 and v2 in Gi−1 respectively where vch

1,2 is the

common situation along these two edges. In a tree each vertex has at most one parent. So in

the staged tree S, the position vch
1,2 would be represented by two separate vertices, call them

vch
1 and vch

2 in the subtrees rooted at v1 and v2 respectively. Thus, the edge (v1, vch
1,2, l) would

be replaced by an edge (v1, vch
1 , l) in the subtree rooted at v1, call this Sv1 in S. Similarly, the

edge (v2, vch
1,2, l) would be replaced by an edge (v2, vch

2 , l) in Sv2 which is the subtree rooted at

v2 in S. Since vch
1 and vch

2 are in the same position in Gi−1, they have isomorphic subtrees in

Sv1 and Sv2 . Similarly, the subtrees rooted at the other children of v1 and v2 in Sv1 and Sv2

respectively are isomorphic whenever the edges from v1 and v2 to their respective children

share the same edge label. Since v1 and v2 are in the same stage, the florets F(v1) in Sv1 and

F(v2) in Sv2 are also isomorphic. Thus Sv1 and Sv2 are isomorphic and hence, they belong

to the same position. �

We now show that the recursion may in fact be stopped for some 0 < r < m. This

optimal stopping criterion is presented below in Theorem 4.8 with its proof.

Theorem 4.8 (Optimal Stopping Criterion). In the sequence of graphs transforming a

staged tree G0 = S to a CEG Gm = C and m ≥ 2 where m is the depth of S, the earliest

stopping time in this transformation that guarantees the required CEG C is the recursion

step r such that Gr = Gr−1 , Gr−2, 0 < r < m.

Proof. Suppose that 0 < r < m recursions have taken place and Gr = Gr−1 , Gr−2. First we

show that Gr = C. As the graph of a CEG is the most parsimonious representation of the

event tree describing a process, this is equivalent to showing that |V(Gr)| = |W| + 1 where

W is the collection of positions. Graph Gr−1 contains the positions for all situations in V−k,

k < r − 1 (from Theorem 4.7). Thus the problem can be framed as showing that if there

are no non-trivial positions in V−(r−1) then there are no non-trivial positions in any of V−k,

r ≤ k ≤ m. We prove this by contradiction.

Let there be no non-trivial positions in V−(r−1). Suppose that two situations v1, v2 ∈

V−r are in the same position and hence, the same stage. This implies that the subtrees of
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S rooted at v1 and v2, say Sv1 and Sv2 respectively are isomorphic. Let vch
1 be a child of

v1 along the edge (v1, vch
1 , l) and let Svch

1
be the subtree rooted at vch

1 . By the definition of

a stage, there exists an edge (v2, vch
2 , l) in Sv2 with rooted subtree Svch

2
. The subtrees Svch

1

and Svch
2

are isomorphic as Sv1 and Sv2 are isomorphic. By the definition of a position, vch
1

and vch
2 are in the same position. As v1, v2 ∈ V−r, we have that vch

1 , v
ch
2 ∈ V−(r−1). This

contradicts that there are no non-trivial positions in V−(r−1). A similar argument can be

made for any v1, v2 ∈ V−k, r ≤ k ≤ m. Since Gr = Gr−1, V−(r−1) has no non-trivial positions

and all the positions in V−k, k < r have been identified. By the above result, V−k, r ≤ k ≤ m

also do not contain any non-trivial positions. Thus Gr = C.

We have that Gr−2 , Gr−1 = Gr = . . . = Gm = C. While stopping at graph Gr−1

gives us the required graph of the CEG, this recursive step is indistinguishable from any of

the other k < r − 1 steps. Hence, the isomorphism of Gr−1 and Gr is needed to stop the

recursions with certainty. Thus the earliest stopping point for the recursion is step r such

that Gr = Gr−1 , Gr−2, 0 < r < m. �

Theorem 4.9 implies that for every staged tree there is a unique CEG and also

that the staged tree can be recovered given this CEG. This is equivalent to saying that no

information is lost in transforming a staged tree into a CEG. Research on CEGs has always

assumed this to be true but a proof for this foundational assumption had been missing from

the literature.

Theorem 4.9 (Preservation of Information). The mapping from a staged tree to its CEG is

bijective.

Proof. We prove bijection by proving injection and surjection.

Injection: We prove the injective contrapositive; i.e. given staged trees S1 , S2,

we show that their corresponding CEGs C1 and C2 are not isomorphic. It is straightforward

to show that if S1 and S2 are structurally not isomorphic, then C1 , C2. Suppose that S1

and S2 are structurally isomorphic and that they differ only in the colouring of one of their

vertices. Let these vertices be v1 with colour c1 in S1 and v2 with colour c2 , c1 in S2.

Since vertices retain their colouring in the CEG, the positions representing v1 and v2 in C1

and C2 will be coloured by c1 and c2 respectively. Hence, C1 and C2 will not have colour

preserving isomorphism. Additionally, C1 and C2 will not be structurally isomorphic if

either or both of v1 and v2 create non-trivial positions in their respective staged trees as the

collection of positions in S1 and S2 will not be equivalent.

Surjection: From a given CEG C, construct a staged tree S as follows:

1. Sort the root-to-sink paths in CΛ in ascending order of the length (number of tuples)

of the paths.
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2. For each path of length ` ≥ 1, let {(c, l)} denote the first tuple in the path where c is

its colour and l is its edge label. Construct an edge from v0, the root of S to a new

vertex (labelled as vi where i is an integer index which hasn’t been assigned thus far

in the construction) and label it l. Assign colour c to v0.

3. In general, for any path of length ` ≥ k for k = 2, 3, . . . ,m, let the sequence up to

its kth tuple be given by {(c1, l1), . . . , (ck−1, lk−1), (ck, lk)}. There necessarily exists a

path given by the sequence {(c1, l1), . . . , (ck−1, lk−1)} ending in a vertex, say vk−1 in

the staged tree constructed so far. To add the kth tuple (ck, lk) to this path, colour vk−1

by ck, add a vertex vk and construct a directed edge from vk−1 to vk with edge label lk.

This construction results in a tree as it is connected (no vertex – with the exception

of the root – is added until it is connected by an edge to an existing vertex) and has no

directed cycles (each edge is constructed from an existing vertex to a new vertex). Call this

tree T ∗. We prove that T ∗ is the unique staged tree whose transformation, as given in our

algorithm, results in our given CEG C.

Observe that a staged tree in uniquely and unambiguously defined by its underlying

event tree and its collection of stages U. The structure of any event tree can be recovered

from its set of uncoloured root-to-leaf paths, which is equivalent to the uncoloured root-to-

sink paths CΛ of the CEG C. As T ∗ is constructed from the set CΛ, the uncoloured version

of T ∗ is the required underlying event tree for C. The vertices of T ∗ inherit their colourings

from the vertices of C. Recall that colouring of vertices in a CEG is indicative of stage

memberships. Hence, two vertices w and w′ with the same colour, say c in C are in the

same stage. By definition of a stage, θθθw = θθθw′ , and for each edge e = (w, ·, l) there exists

an edge e′ = (w′, ·, l) such that θ(e) = θ(e′) in C. Two vertices v and v′ with the colour c

in T ∗ either belong to the same position set in C – without loss of generality assume this

position set is represented by w – or belong to two distinct position sets in C, assume these

are represented by w and w′. If both v, v′ belong to position set represented by w, then v

and v′ in T ∗ are created from two separate root-to-w subpaths, say p and p′ in C. Floret

F(v) is formed by creating k copies of subpath p and appending each with a distinct (c, li)

where i = 1, . . . , k and li is the label of the ith edge emanating from w in C. Floret F(v′) is

constructed in a similar manner. Thus v and v′ have the same number of emanating vertices

in T ∗ and share the same vertex colour as they satisfy the conditions of being in the same

stage by belonging to the same position in C. This also holds when v and v′ belong to

position sets represented by w and w′ respectively, where w and w′ share the same colour in

C, with the exception that p will be a root-to-w subpath and p′ a root-to-w′ subpath. Thus

T ∗ is the underlying staged tree of C as it has the structure of the event tree of C and a

collection of stages equivalent to that of C. �
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4.3.3 Related Work

An algorithm, similar to the one presented in Section 4.3.2 above, was presented in Silander

and Leong (2013) to learn a stratified staged tree from its underlying event tree and to

transform it into a stratified CEG (although the stratified terminology was not explicitly

used). The input for their algorithm is the staged tree of an XXX(I)-compatible event tree for

some XXX = {X1, X2, . . . , Xn} and some permutation I. Such a staged tree has n + 1 layers; n

layers where each layer contains situations representing the same variable, and a final layer

representing the leaves of the staged tree. Their algorithm involves a backward iteration

through all the layers to identify situations belonging to the same position. In their paper,

the term “layer” is not directly defined and this ambiguity needs to be resolved before their

algorithm can be applied to a non-stratified staged tree. By defining each layer k to be

equivalent to the set V−k (defined in Section 4.3.2) k = 0, 1, . . . , n, their algorithm can be

applied to non-stratified staged trees. However, the algorithm presented in Silander and

Leong (2013) involves certain non-trivial steps (analogous to Theorem 4.7) for which they

provided no proof. Additionally, as they did not provide an early stopping criterion, their

algorithm requires iterating through all the layers of the staged tree.

4.3.4 Experiments for the CEG Construction Algorithm

We now examine how our staged tree to CEG construction algorithm performs when com-

pared to an adapted version of the algorithm presented by Silander and Leong (2013).

We adapt the algorithm in Silander and Leong (2013) so that layer k in their algo-

rithm corresponds to what we defined as set V−k in Section 4.3.2. While we also proved the

theoretical results associated with the algorithm, for practical purposes the difference be-

tween the adapted version of the algorithm in Silander and Leong (2013) and our algorithm

is that ours comes with an early stopping criterion which allows the iteration to be stopped

earlier when certain conditions are met. For convenience, call their adapted algorithm the

baseline algorithm and ours the optimal time algorithm.

We compare the performance of the baseline and optimal time algorithms on 7

datasets. The collection of stages in the event tree of the process are first identified using

the AHC algorithm. The performance of the baseline and optimal time algorithms are then

compared based on their runtimes to construct the CEG from the staged tree obtained using

the AHC algorithm.

The first four datasets used for the comparison are from the UCI repository (Dua

& Graff, 2019). The missing values were removed and sampling zeros were treated as

structural for simplicity. The fifth dataset is from the Christchurch Health and Development

Study (CHDS) conducted at the University of Otago, New Zealand (see Fergusson et al.
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(1986)). The penultimate dataset is simulated data for the falls intervention as presented in

Section 4.5. The final dataset is an extension of this dataset presented in Section 5.7. The

last two datasets have structural asymmetries. Thereby their event trees are not stratified

and the atoms of their event spaces given by their root-to-leaf paths are not all of the same

length. The event trees for the remaining datasets are stratified.

These experiments were run on a 2.9 GHz MacBook Pro with 32GB memory using

my Python code https://github.com/ashenvi10/Chain-Event-Graphs. This code can handle

datasets with structural asymmetries (stored as NaNs or null values) and also provides the

capability to manually add sampling zero paths to the tree. The code is currently set up

to learn the staged tree from the event tree of the dataset using the AHC algorithm with

hyperstages (defined in Section 4.4) being an optional argument. Observe that, unlike the

existing ‘ceg’ (Collazo & Taranti, 2017) and ‘stagedtrees’ (Carli et al., 2020) R packages,

our code is not restricted to stratified CEGs and it also allows manual addition of edges with

sampling zeros.

Dataset |S| Depth m |V(C)| TBaseline TOptimal

Iris 52 5 42 1.635 1.414
Hayes-Roth 124 5 58 12.118 12.085
Balance scale 327 5 90 145.052 143.321
Glass 636 10 308 389.272 376.689
CHDS 19 4 10 0.586 0.556
Falls 39 6 27 1.564 1.453
Falls dynamic 346 5 242 585.789 550.990

Table 4.1: Comparison of the baseline algorithm and the optimal time algorithm.

Table 4.1 gives for each dataset the number of situations in the staged tree output

by the AHC algorithm (|S|), the maximum depth of the staged tree (m), the number of

positions in the resulting CEG found by the two algorithms (|V(C)|) and the time taken (in

milliseconds) by the two compacting algorithms (TBaseline and TOptimal). Due to difficulty

scaling the AHC algorithm, we allowed situations to be in the same stage only if they

satisfied the additional condition of being at the same distance from some leaf of the staged

tree. However, this does not affect the performance of the baseline or optimal time algorithm

as situations can only be in the same position if they are at the same distance from some

leaf.

From Table 4.1 we can see that the optimal time algorithm takes less time than the

baseline algorithm while arriving at the same CEG as it stops as soon as Theorem 4.8 is

satisfied. The time saved using the optimal algorithm compared to the baseline algorithm

is quite modest in the datasets considered here. This is because the gain in efficiencies

are inversely proportional to the farthest distance of a situation, belonging to a non-trivial
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position set in the staged tree, from a leaf of the staged tree. For instance, if all situations

belonging to non-trivial position sets are situated in V−1 then using the optimal stopping

criterion, the iteration can be stopped after obtaining the intermediate graph G3 and this

saves us searching through V−i, i = 3, 4, . . . , n. Whereas, if there were situations in V−(n−1)

belonging to the same position set, then there is no gain in efficiency between the baseline

and optimal algorithms.

4.4 Model Selection for Non-Stratified CEGs

Conjugate learning and prior specification for non-stratified CEGs proceeds exactly as de-

scribed for stratified CEGs in Chapter 3. In this section, we discuss how the model selection

algorithms described in Section 3.2.3 can be extended to search the model space of non-

stratified CEGs.

The model search space of the non-stratified CEG class is very large. A full search

through this space quickly becomes infeasible as the number of events represented by the

event tree increases. Hence, to enable a meaningful search through this vast space, we

introduce the concepts of square-free staged trees and CEGs (Collazo et al., 2018), and

hyperstages (Collazo, 2017).

Definition 4.10 (Square-free staged tree (/CEG)). A staged tree S (/CEG C) is said to be

square-free if no two situations that lie on the same root-to-leaf (/root-to-sink) path are in

the same stage set.

We assume here that the staged trees and hence the CEGs we consider in this chap-

ter are square-free. For vanilla CEGs, the square-free requirement is a natural one. It is

generally of interest to know whether the one-step evolution of two situations is equivalent

only when they represent the same type of event. While our definition of stages tries to

ensure that this is the case by requiring that the edge labels and their corresponding tran-

sition probabilities are equivalent between situations in the same stage, it is possible that

inherently different events have the same edge labels. For example, in the falls intervention,

both XRe (referral) and XF (fall status), could have outgoing edges with labels “Yes” and

“No”.

There are, of course, scenarios where such an assumption may not be appropriate.

For example, in the modified falls example, it could be of interest to identify whether any

situations representing variables XRi (risk) and XRev (revised risk) are in the same stage since

they both represent similar events. For such processes, we can assume that the associated

event tree and CEG are not square-free. The concept of hyperstages described below may

still be used in these processes to narrow the search space.
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Definition 4.11 (Hyperstage). A hyperstage H = {H1,H2, . . . ,Hn} for the situations S (T )

of an event tree T is a collection of sets such that any two situations v and v′ can be in the

same stage in U only if there exists a set Hi ∈ H such that v, v′ ∈ Hi.

Observe that the definition of a hyperstage does not require the sets contained within

the hyperstage to be mutually exclusive. However, the model selection process is greatly

simplified when these sets are mutually exclusive. Within this thesis, we shall assume

that the sets contained within a hyperstage are mutually exclusive. The hyperstage enables

the modeller and domain experts to encode sets of structural and causal hypotheses into

the process of model selection (Collazo, 2017). In fact, the assumption of a staged tree or

equivalently, its associated CEG being square-free is encoded within the hyperstage defined

for the process.

We now discuss how the model selection algorithms described in Section 3.2.3 for

stratified CEGs can be extended to non-stratified CEGs using the concept of a hyperstage. In

theory, the AHC algorithm for model selection can be directly applied to the non-stratified

class as it does not have any constraints specific to the stratified class. Recall that the

AHC is a greedy model search algorithm and it checks for score improvements obtained

by pairwise merging of every pair of stages that satisfy the requirement of having the same

number of outgoing edges and the same set of edge labels. However, inherently different

situations can have equivalent sets of edge labels. For the stratified class, this problem

can be overcome by running the AHC algorithm on each layer of a stratified event tree as

described in Section 3.2.3. By definition, each layer of the stratified event tree represents

the same set of events. We can replicate this strategy within the non-stratified class by

constructing its hyperstage such that each set within the hyperstage contains situations that

satisfy both the above stated conditions and also represent the same types of events. In this

case, each set of the hyperstage for the non-stratified event tree is analogous to each layer

of the stratified event tree.

Example 4.12 (Falls intervention example). For instance, for the event tree in Figure 4.1,

the hyperstage could be given by

H = {{s0}, {s1, s2}, {s3}, {s4, s5, s6}, {s7}, {s8, s9}, {s10, s11},

{s12, s13, s14, s15, s16, s17, s18}}.

When the hyperstage partitions the vertex set of an event tree, running the AHC al-

gorithm on the entire event tree can be simplified to running AHC independently on each of

the sets in the hyperstage. However if the sets in the hyperstage are not mutually exclusive,

we cannot optimise by identifying the stages in each set of the hyperstage independently
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and the AHC algorithm must be run over the entire event tree. The search space is still

restricted due to the hyperstage.

For mutually exclusive sets in the hyperstage, the dynamic programming approach

to model selection can be adopted to find the best stage partition within each set of the

hyperstage. However, dynamic programming cannot be implemented when the sets of the

hyperstage are not mutually exclusive. In Section 3.2.3 we discussed how the dynamic

programming approach can also be used to find the best ordering of the variables describing

the event tree. This approach cannot be directly used for the non-stratified class as the

ordering of the variables need not be the same across all root-to-leaf paths of the event

tree. This leads to an extremely large search space even for a small problem. However,

restrictions can be introduced based on the application to reduce the search space. For

instance, a non-strict total ordering of the variables would vastly reduce the search space.

Finally, we caution that when performing model selection for the non-stratified

class, if the event tree is being constructed directly from data then care must be taken to

not assume that all occurrences of zero edge counts are structural zeros. The dataset could

have sampling zeros which are occurrences of zero observations due to sampling limitations

as discussed in Section 4.1. In such cases, any edges with sampling zeros would need to be

added to the event tree.

4.5 Application of the Falls Intervention

In this section, we analyse a simulated dataset based on the extension of the falls interven-

tion (first described in Section 4.1) as presented in Shenvi et al. (2018). We then compare

the use of a BN and a CEG to model this public health intervention. Here we addition-

ally classify individuals by their type of residence as the domain literature suggests that the

fall rates are higher for individuals living in institutionalised care. Below we describe the

domain information used to simulate our dataset.

2011 Census: Aggregate Data (2011) distinguishes the usual residence (living for

six months or longer) of individuals as community-dwelling or living in communal estab-

lishments (as defined in “Office for National Statistics: 2011 Census Glossary” (2011)).

Communal establishments include care homes, nursing homes and hospitals. Close to

96.3% of those aged over 65 in England and Wales lived in the community in 2011. For our

data simulation, we assume this proportion has not changed drastically in the years since.

The risk of falling for those living in communal establishments is significantly higher than

for those living in the community which could be due to the reduced general health and

increased frailty of those who tend to live in nursing homes and hospitals (Cameron et al.,

2010). It was found that the falls incidence in nursing homes is roughly thrice that in the
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community with 1.4 falls per person per year for residents of a nursing home (Rubenstein

et al., 1994; Nurmi & Lüthje, 2002). The fall rates in hospitals vary between wards and

in-hospital fall records show rates from 2.9-13 falls per 1,000 bed days (Morse & Field,

1996).

2011 Census: Aggregate Data (2011) provides details of the self-reported health

status of those aged over 65 years in England and Wales. Individuals were asked to classify

their health as “Very good or good health”, “Fair health” or “Bad or very bad health”. This

information is summarised in Table 4.2. We assume that the proportion of high risk indi-

viduals is equivalent to the proportion of individuals who self-reported their health status as

“Bad or very bad health”. Under this assumption, roughly 36.35% of individuals in com-

munal establishments and 14.74% of individuals in the community are assumed to be at a

high risk of falling. These figures match with the overall proportion of high risk individuals

in the population as found in Eldridge et al. (2005) and with the risk of falling for individu-

als in nursing homes as found in Nurmi and Lüthje (2002) adjusted for removal of recurrent

falls. Further, based on the referral pathways in Eldridge et al. (2005), we assume that it

was more likely for the intervention to assess a greater proportion of individuals living in

communal establishments (we set this at 20%) than in the community (we set this at 6%).

We also assume that a higher proportion of high risk communal establishment individuals

would be assessed by the intervention than the corresponding proportion for community

dwellers due to the design of the assessment pathways in the intervention.

Communal Establishments Community
Very good or good health 50,058 4,473,000
Fair health 146,409 3,102,886
Bad or very bad health 112,210 1,309,752
Total 308,677 8,885,638

Table 4.2: Self-reported health status of individuals aged over 65 living in England and
Wales separated by type of usual residence.

The conditional transition probabilities for the data generating event tree were de-

termined by the above assumptions. The data generating staged tree is given in Figure 4.8.

The vertex labels for the leaf vertices are hidden to prevent visual cluttering. Note here

that we combine the variables for the residence type and assessment into one. Similarly,

we combine the variables for referral and treatment into one. This does not affect the infer-

ence or the reading of conditional independences from the topology of the resultant CEG as

the probability of assessment, referral and treatment are set by intervention design. Addi-

tionally, here we treat the combined variable of referral and treatment as having no logical

interpretation for individuals who have not been assessed, as by intervention design they do
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not receive any referral or treatment. Hence we treat it here as structurally missing rather

than as a structural zero with no effect on the inference. For this illustration we generate a

dataset of 50,000 individuals by forward sampling. The numbers along the edges in Figure

4.8 represent the observations along each edge. Observe that several of the branches are

sparsely populated. For instance, there are only two observations along the edge indicating

falls suffered by assessed low risk individuals in communal establishments who received

treatment. Sparsely populated edges may pose a problem for model selection. We discuss

this further in Section 4.6.

Figure 4.8: Staged tree representing the data generating model.
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Here we model this modified falls intervention with a CEG as well as a BN. We

can define the variables used to study this intervention asX′′X′′X′′ = {XA, XRi, XT , XF}. Here XA

indicates whether the individual aged over 65 resides in the community or in a communal

establishment (such as nursing homes, care homes, hospitals) and whether they have been

assessed or not, and XT indicates whether the individual has been referred & treated, not

referred & treated or not treated. XRi and XF are defined as before.

For identifying the MAP CEG, we specify the hyperparameters using the property

of mass conservation as described in Section 3.2.2 with a weakly informative imaginary

sample size (ᾱαα0) of 4. All CEG structures are assumed a priori equally likely. The hyper-

stage is given by

H = {{so}, {s1, s2, s3, s4}, {s5, s7}, {s6, s8}, {s9, s10, s11, s14, s16, s17, s18, s21},

{s12, s13, s15, s19, s20, s22}}.

The MAP CEG returned by the AHC algorithm is given in Figure 4.9. Note that the stage

structure of this CEG is equivalent to the stage structure of the data generating tree given in

Figure 4.8. The log marginal likelihood score of this CEG is -68,671.59.

Figure 4.9: MAP CEG returned by the AHC algorithm.

To learn the BN structure, we use the Hill-Climbing algorithm from the R package

‘bnlearn’ (Scutari, 2010) with the BD equivalent uniform metric to compare BN structures.

The Hill-Climbing algorithm outputs the BN in Figure 4.10(a). As the intervention naturally

gives rise to a total order of XA ≺ XRi ≺ XT ≺ XF , we suppress certain edges in order for the

BN to be representative of our application. For instance, the directed edge from Treatment

to Risk is suppressed given the total order. This gives rise to the BN in Figure 4.10(b). The

log marginal likelihood score of this BN structure is -68,709.99.
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Figure 4.10: (a) Original BN returned using the Hill-Climbing algorithm; (b) Best-fitting
BN which admits the total order of XA ≺ XRi ≺ XT ≺ XF .

Thus the log Bayes Factor (Bayes Factor) against the BN model is 38.4 (4.7523 ×

1016) which may be interpreted as very strong evidence against the BN model when com-

pared to the CEG (see Section 3.2.1). Additionally, from the topology of the graph of the

MAP CEG in Figure 4.9, we can directly see that the variable of treatment XT is not defined

for both risk groups and both residential settings for those who are not assessed. Whereas,

variable XT is defined for those who are assessed and live in either residential setting, irre-

spective of their risk group. This information cannot be inferred from the graph of the BN

in Figure 4.10(b).

We now perform sensitivity analysis on the choice of the root imaginary sample size

ᾱαα0. We learn the MAP CEG from the data using the AHC algorithm with varying values

of ᾱαα0 and compare the number of stages at each value of ᾱαα0 between 0.25 and 20 with

increments of 0.25 as shown in Figure 4.11. The number of stages and in fact, the stage

structure for ᾱαα0 greater than three are equivalent to the data generating model.

Figure 4.11: The number of stages in the MAP CEG model of the falls intervention for
varying values of ᾱαα0.

Finally, we note here CEGs admit exploration of causal hypotheses through manip-
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ulations under certain conditions as described in detail in Thwaites et al. (2010), Barclay

et al. (2013), and Thwaites (2013). Such CEGs are called causal CEGs. Manipulations in

CEGs can be asymmetric as it is possible to intervene in certain positions and not neces-

sarily on the entire variable. For instance, assuming our non-stratified CEG in Figure 4.9

is also a causal CEG, we may wish to examine the effect of referral and treatment given to

all assessed high risk individuals irrespective of their type of residence. This would result

in the deletion of edge w5 to w7 as well as the edge labelled “not referred & treated” from

w5 to w9. The edge probabilities remain unchanged except that the probability of traversing

the remaining w5 to w9 edge conditional on reaching w5 is one.

4.6 Conclusion

We presented a simple iterative backward algorithm along with supporting Python code to

transform any staged tree into a CEG. Research in CEGs and their applications has been

an increasingly active field in recent years. However, such a general algorithm and proofs

of the validity of the staged tree to CEG transformation had been missing in the literature

so far. A soon to be published d-separation theorem for CEGs has been developed (Wilk-

erson, 2020). Construction of ancestral CEGs in this theorem follows the same procedure

as our algorithm. Hence, automating this process, as we have done, is a very timely de-

velopment. Further, by providing the associated Python code accommodating stratified and

non-stratified CEGs, we hope to motivate further applications using non-stratified CEGs.

We observed for our modified falls intervention example in Section 4.5 that the

CEG appears to be robust against varying values of ᾱαα0. For ᾱαα0 greater than three, the resul-

tant CEG was the data generating model. The smaller values of ᾱαα0 were unable to return

this perhaps due to sparse observations along some of the edges of the event tree. In the

falls intervention scenario we had domain literature to support the veracity of the staging

produced by the AHC. It has been shown in Collazo and Smith (2016) that the AHC al-

gorithm with local Dirichlet priors may merge stages without any sparsity of observations

with stages whose edges contain sparse observations, regardless of the actual generating

process. Hence, in the absence of sufficient domain information, we recommend that situa-

tions whose emanating edges contain sparse observations should be maintained as singleton

stages in the hyperstage structure until more information is available. Failing this, spurious

stages may be merged by the AHC resulting in biased inference from the CEG.

In Eldridge et al. (2005), a Markov chain was used to analyse the falls interven-

tion. Unlike the BN, Markov chains can satisfactorily express asymmetric information

introduced by structural asymmetries. However, an essential property which it lacks is the

ability to read conditional independence statements from the topology of its state transition
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diagram. It also does not admit causal manipulations. These properties are particularly use-

ful for modelling multi-factorial interventions where there are several different components

of the intervention whose contributions and effects may not be trivially quantified or anal-

ysed. Hence the CEG as described in this chapter proves to be a more appropriate choice

of model for the falls intervention compared to a Markov chain or a BN. However, most

importantly, the states of a Markov process are typically elicited before the analysis begins.

Thus, the CEG model selection may be viewed as an alternative method for identifying the

states of its associated Markov chain.

The falls intervention CEG described in this chapter caters to a short-term analysis.

However, this intervention represents a longitudinal process and it would be more appro-

priate for it to be treated as such. Dynamic variants of the CEG such as those described in

Section 3.4 could be suitable candidates for modelling the falls intervention. Further, we

observe that different individuals in the falls intervention may take different amounts of time

to transition between the same situations. For instance, different individuals living in the

community who have been assessed, referred and treated may experience a fall after vary-

ing amounts of time since they received their treatment. Also, as already noted in Section

3.4, in such a setting, it may be more natural to record events as they occur rather than at

regular intervals. This type of setting corresponds more closely to a semi-Markov process

rather than a Markov chain. However, like a Markov chain, a semi-Markov process does

not allow for reading conditional independencies from the topology of its state transition

diagram. Extended DCEGs which have a corresponding semi-Markov representation are a

special subclass of the more general continuous time DCEGs described in the next chapter.

Therein we further demonstrate why the general class of continuous time DCEGs would be

an ideal candidate for modelling a longitudinal extension of the falls intervention.
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Chapter 5

Continuous Time DCEGs

We concluded Chapter 4 with a brief motivation for a continuous time dynamic variant of

CEGs. As described in Section 3.4, extended DCEGs which were introduced in Barclay et

al. (2015), evolve in continuous time but have some critical limitations. One such limitation

is that extended DCEGs assume that the conditional holding time distributions for two

situations are the same whenever they belong to the same stage set (see Definition 3.3).

Clearly, this excludes the possibility of two situations having the same conditional transition

probabilities but different conditional holding time distributions. Thus, extended DCEGs

define a subclass of the more general class of continuous time dynamic CEGs (CT-DCEGs).

This chapter is dedicated to exploring the CT-DCEG class of models.

We begin this chapter by further motivating the need for the general class of CT-

DCEGs in Section 5.1. In Section 5.2 we formally introduce the CT-DCEG class. Here,

we generalise the previous definition of a stage set presented in Definition 3.3 in order to

make the CT-DCEG class more flexible. This generalised definition applies to all discrete

and continuous time DCEGs (and CEGs), and allows for arbitrary conditional holding time

distributions to be defined for each event. In Section 5.2.1, we discuss how time-invariant

covariates such as educational background, age, socioeconomic status etc. can be incor-

porated into a CT-DCEG – this discussion is continued in the subsequent methodological

sections. In Section 5.2.2 we then compare the CT-DCEG with existing alternative models

such as the CTBN (see Section 2.3.1) and two graphical model classes developed for event

history analysis.

In Section 5.3 we discuss Bayesian conjugate updating of the CT-DCEG model pa-

rameters, and present a special case of model selection for this class. In Section 5.4 we

demonstrate how the CT-DCEG class enjoys a, sometimes approximate, alternative repre-

sentation as a semi-Markov process; extending the work presented in Barclay et al. (2015).

In Section 5.5, we present a new concept of passage-slices, customised to our continuous
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time setting, which is analogous to time-slices in discrete time settings. In this section we

also demonstrate how a CT-DCEG can be “unrolled” over an arbitrary number of passage-

slices, much like the unrolling of a DBN over its time-slices (Kjærulff, 1992). With these

new semantics and the alternative semi-Markov representation, we then present a novel

dynamic probability propagation scheme for the CT-DCEG and an associated continuous

time propagation algorithm in Section 5.6 which extends the CEG propagation algorithm

presented in Thwaites et al. (2008) (see Section 3.3). In Section 5.7, we use a CT-DCEG to

model a longitudinal adaptation of the falls intervention containing time-invariant covari-

ates. Finally, we conclude this chapter with a discussion in Section 5.8.

5.1 Introduction

In dynamic real-world systems, temporal effects could play a large role in the evolution

of the process and contribute to our understanding of the system. To study temporal ef-

fects within a system, it is important to consider the time it takes for events to occur. The

branch of statistics studying the time it takes for one or more events to happen is known as

survival analysis, duration modelling or event history analysis. We can incorporate such a

temporal analysis within a CEG or any of its dynamic variants by modelling the time for

each transition with a holding time (also known as waiting time or sojourn time) random

variable.

Dynamic variants of CEGs considered thus far have been for discrete time pro-

cesses, except for the notable exception of extended DCEGs in Barclay et al. (2015).

DCEGs were first introduced in Barclay et al. (2015). The thesis of Dr Rodrigo Collazo

(Collazo, 2017) further laid down the mathematical framework of DCEGs and N time-slice

DCEGs (see Section 3.4). However, dynamic continuous time variants of CEGs have not

yet been explored systematically. As stated above, extended DCEGs represent a special sub-

class of the general CT-DCEG class as they contain only those CT-DCEGs whose situations

have equivalent conditional holding time distributions whenever they are in the same stage

(where a stage follows the definition presented in Chapter 3). Thus extended DCEGs sys-

tematically exclude any CT-DCEG whose situations may have equivalent transition prob-

abilities but their corresponding conditional holding time distributions are different. For

instance, two types of treatment for a particular disease may offer the same probability of

recovery but one of these treatments might take a significantly longer time to show effects

than the other. Another more topical example is one where a certain vaccine may need only

one dose to be effective and shows effects within two weeks of the dose being administered,

whereas another vaccine requires two doses which are three weeks apart and results in the

same level of protection as the first vaccine but effects take a total of five weeks of the
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first dose being administered. Hence, the general CT-DCEG class vastly expands the types

of problems we can model compared to its extended DCEG subclass. We also note that

extended DCEGs have themselves not yet been explored in great detail.

Further, while this has not been explicitly mentioned in the model descriptions of

DCEGs as presented in Barclay et al. (2015) and Collazo (2017), the discrete time DCEGs

they consider are such that the transitions happening out of each situation are governed by

some fixed discrete holding time distribution. This appears to be an implicit assumption as

the definition of stages and model likelihood in their works do not make any accommoda-

tions for the discriminatory powers endowed by having different conditional holding time

distributions for each transition. Further, we can also say from their works that these dis-

tributions in fact must necessarily be geometric holding time distributions because DCEGs

have been described as having the Markov property and have also been shown to have an

alternative Markov process representation. When a DCEG is stratified, the geometric dis-

tributions associated with situations in different layers may have different values for their

“success probability” parameters (see Appendix A). Again in this case, any information

about the temporal evolution of the process modelled by such a DCEG does not have any

discriminatory power and so does not need to be explicitly considered. Notice that this is

also the case with vanilla CEGs. Within a discrete time DCEG or CEG, we can still al-

low each transition to be modelled by a different conditional non-geometric holding time

distribution but this has not yet been explored.

For several discrete time longitudinal processes a fixed geometric holding time dis-

tribution for each transition out of a given situation may not be appropriate. Different tran-

sitions corresponding to distinct events, all evolving in discrete time, might still have vastly

different distributions of their holding times. The general framework presented in this chap-

ter for CT-DCEGs can also be applied to the discrete time DCEG class to incorporate non-

geometric conditional holding time distributions. It is important to note, however, that if the

only data available was collected at fixed regular intervals, DCEG models with geometric

holding times might be appropriate even if the underlying process itself may not follow

a geometric holding time for each transition. An example of this is where, on diagnosis

of a chronic illness, a patient’s past symptoms are recorded but the timings between the

presentation of these symptoms are not recorded. See Section 6.3 for an application of a

CT-DCEG where most of our observations are recorded at regular intervals while the rest

are received at irregular intervals from secondary sources.

Finally, in many processes of interest, we might be interested in incorporating time-

invariant covariates (existing attributes of an individual) that influence the rest of the pro-

cess evolving in continuous time. Examples of such time-invariant covariates could be an

individual’s sex, age, chronic health conditions etc. It would seem unnatural to associate
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any holding time with transitions out of the situations describing these covariates within an

event tree. Throughout this chapter, we discuss how the CT-DCEG and the methodologies

developed for it can accommodate such time-invariant covariates.

The methodologies in this chapter are described throughout with an adapted version

of our topical infection example described below.

Example 5.1 (Infection example continued). We consider here individuals in the commu-

nity and in communal establishments. Individuals in the community could get infected by

one of three strains of a circulating virus. Infection caused by two of these strains can be

treated, with varying success, by one of two available treatments while there are no treat-

ments for the third strain. Individuals in communal establishments have received a vaccine

protecting them against the first two strains but not against the third. We assume that hos-

pitalisation is not required for the treatments and only the most severe cases need to be

admitted to the hospital. We are interested in studying first time hospitalisations arising

from the infections. Further, we assume that recovery from a prior infection from the same

virus does not offer any strain-specific immunity from the same strain or cross-immunity

from other strains. Figure 5.1 shows the event tree for the infection example where the

three black (grey) dots indicate that after recovery the process restarts at vertex v1 (vertex

v2) as the individual could be reinfected. Observe that vertex v0 describes the time-invariant

covariate representing the living arrangements of the individual.

5.2 Continuous Time Dynamic Chain Event Graphs

Let T denote an event tree with an infinite vertex set V(T ) and an infinite directed edge

set E(T ). Such event trees are also sometimes referred to as infinite event trees. Note that

an infinite event tree might not have any terminating paths and hence, its set of leaves may

be empty. Denote by λ(v, v′) a directed path from vertex v to vertex v′, if it exists, where

a directed path is a sequence of directed edges from v to v′, and by Λ(v, v′) the set of all

such paths. Denote by TΛ the set of all root-to-leaf and all infinite paths in T . These

paths define the atoms of the event space generated by T . Notations defined for finite event

trees in Section 3.1 extend to infinite event trees in the obvious way. It is essential to first

demonstrate that a probability measure can be defined on the events in the probability space

of an infinite event tree model. The proof is a straightforward application of Kolmogorov’s

extension theorem and it is presented in Appendix B.

We now define conditional holding times for each transition in the event tree. To

begin with, we assume that we have no time-invariant covariates and that each transition can

be associated with a continuous holding time random variable. Each transition from vertex
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Figure 5.1: Event tree representing the longitudinal infection process.

v to vertex v′ for v ∈ S (T ) is associated with a holding time which indicates the time spent

in the state represented by situation v before transitioning along an edge e = (v, v′, l) to v′.

This conditional holding time is represented by the continuous random variable H(e). Here

we assume that the holding time is dependent on the current vertex and the vertex visited

next. Let HHHT = {H(v)|v ∈ S (T )} where H(v) = {H(e)|e = (v, v′, l) ∈ E(T ), v′ ∈ ch(v)}

denotes the set of conditional holding time variables for each edge emanating from situation

v ∈ S (T ). Let H(v) denote the unconditional holding time at vertex v. Further, we assume

that the conditional transition probabilities are independent of the conditional holding time

distributions.

Example 5.2 (Infection example continued). In the infinite event tree in Figure 5.1, con-

sider the infinite event tree rooted at vertex v1. This tree does not represent any time-

invariant covariates. Each edge in this tree can be associated with a holding time random

variable. For instance, the variable H(e7,15) indicates how long it takes for an individual

in the community, infected with strain 1 of the virus, to recover after treatment 1 has been

administered.
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Recall that a stage set represents a set of situations whose one-step evolutions are

identical; i.e., these situations can be considered exchangeable as far as their one-step evo-

lutions are concerned. Further as mentioned in Section 5.1, discrete time DCEGs as in-

troduced in Barclay et al. (2015) do not explicitly model holding times for the transitions.

Therefore, the definition of a stage in Barclay et al. (2015) (as in all other existing CEG

literature) only considers the equivalence of the conditional transition probabilities and the

corresponding edge labels as the conditions for two or more situations to be in the same

stage set. As the extended DCEG is defined as an extension of the discrete time DCEG,

it inherits this definition of a stage which does not consider the equivalence of the holding

times for the transitions out of the situations in the same stage set. To circumvent this issue,

extended DCEGs assume that whenever two situations are in the same stage (as per the Bar-

clay et al. (2015) definition), their conditional holding time distributions are also equivalent.

In Section 5.1, we considered examples of when this might not be the case. We now gen-

eralise the definition of a stage so that it considers the equivalence of both the conditional

transition probability distributions and the conditional holding time distributions.

Definition 5.3 (Stage). In an event tree T , two situations v and v′ are said to be in the same

stage whenever

• θθθv = θθθv′ such that for θ(e) = θ(e′) we require that e = (v, ·, l) and e′ = (v′, ·, l) for

some edge label l;

• Variables H(e) and H(e′) for e = (v, ·, l) and e′ = (v′, ·, l) follow the same distribution.

Observe that while the second condition given in this new definition was not part

of the original definition (as in Barclay et al. (2015), other CEG literature and as given

in Definition 3.3), it does not change the collection of stages obtained for vanilla CEGs or

discrete time DCEGs. As described in Section 5.1, due to the implicit geometric distribution

(for discrete time CEGs and DCEGs), the second condition would be satisfied by default.

Just as before, each stage set is assigned a unique colour. The definitions of staged trees

and positions require only minor adaptations as given below.

Definition 5.4 (Staged tree). An event tree T whose situations are coloured according to

their stage memberships is called a staged tree S with ΦS = ΦT andHHHS =HHHT .

Definition 5.5 (Position). In a staged tree S, two situations v and v′ are said to be in the

same position whenever we have ΦSv = ΦSv′ , and the conditional holding time distributions

followed by the collections of random variablesHHHSv andHHHSv′ are equivalent where Sv and

Sv′ are the coloured subtrees of S rooted at v and v′ respectively.

We can now directly define a CT-DCEG from its underlying staged tree.
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Definition 5.6 (Continuous Time Dynamic Chain Event Graph). A continuous time

dynamic chain event graph (CT-DCEG) D = (V(D), E(D)) is defined by the tuple

(S,W,ΦΦΦS,HHHS) with the following properties:

• V(D) = R(W)∪w∞ if L(S) , ∅ and V(D) = R(W) otherwise, where R(W) is the set of

situations representing each position set inW and w∞ is the sink vertex. Additionally,

vertices in R(W) retain their stage colouring and for w ∈ R(W), θD(w) = θS(w) and

HD(w) = HS(w).

• Situations in S belonging to the same position set in W are contracted into their

representative vertex contained in R(W). This vertex contraction merges multiple

edges between two vertices into a single edge only if they share the same edge label.

• Leaves of S, if any, are contracted into sink vertex w∞.

Comparing the above to the definition of extended DCEGs in Section 3.4, it is clear

that extended DCEGs are a special subclass of CT-DCEGs and they contain only those

CT-DCEGs which do not have loops and for which all sets of situations satisfying the first

condition of a stage as described above, necessarily satisfy the second condition as well.

While extended DCEGs are defined to have no loops, this is not a strict requirement for CT-

DCEGs. Consider the example below where a loop within a CT-DCEG may be sensible.

Example 5.7 (Epilepsy example). Consider a study of individuals recently diagnosed with

epilepsy. Suppose we are interested in studying the probability of and time to subsequent

seizures after these individuals start treatment with a type of anti-epileptic drug. According

to Hughes et al. (2019), while most patients find varying degrees of improvement in their

condition with anti-epileptic drugs, “30% (of epileptic patients) never enter a sustained

(12-month) remission from seizures, despite multiple treatment changes”. It is conceivable

then that among the individuals being studied, we might have a subgroup for whom the

anti-epileptic drug is not effective, and their probability of and time to subsequent seizures

is fairly consistent (note that this is not always the case even among those within the 30%

for whom anti-epileptic drugs are not effective). The subgraph of the CT-DCEG for this

subgroup may be given by Figure 5.2.

The notation defined for event trees and CEGs extends to CT-DCEGs in the obvious

way. Recall the difference between a walk and a path as described in Section 2.2. Also

recall that a path is a walk but the converse is not necessarily true. While in CEGs all

discussions were around paths rather than walks, for a CT-DCEG or in fact, any DCEG we

must be careful to distinguish a path from a walk. For the sake of generality, we shall use

the terminology of walk except when the distinction is necessary.
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w1 w2
Start drug

Seizure

Figure 5.2: Hypothesised subgraph of the CT-DCEG for a subgroup of epileptic patients
who do not benefit from the anti-epileptic drug being studied.

Observe that the definition of CT-DCEGs does not require its vertex set V(C) to

be finite. In the case where we have countably infinite stage sets and hence, countably

infinite position sets, V(C) would be infinite too. This would result in a non-finite CT-DCEG

graph which poses visualisation and methodological challenges. Further, for most practical

purposes we would be interested in analysing a finite sub-model of such an infinitely large

model (see Section 5.5 for obtaining a finite sub-model from an infinitely large CT-DCEG).

Hence, we consider here only the CT-DCEGs with a finite vertex set, hereon simply referred

to as a finite CT-DCEG. Finite CT-DCEGs also have an alternative representation as a finite

state semi-Markov process as described in Section 5.4. Hence, the finite CT-DCEG subclass

of CT-DCEGs is of practical interest in translating a real-world domain process into a simple

graphical depiction. In fact, this subclass is analogous to repeating time-slice DBNs (Dean

& Kanazawa, 1989) and N time-slice DCEGs (Collazo, 2017).

Definition 5.8 (Regular CT-DCEG). Say that a CT-DCEG D is regular if its conditional

transition parameters in ΦΦΦD and its conditional holding time random variables inHHHD are

all time homogeneous.

The CT-DCEGs considered in this thesis are all finite and regular.

5.2.1 Incorporating Time-Invariant Covariates

We now discuss how time-invariant covariates can be incorporated within a CT-DCEG

model. Time-invariant covariates are those existing attributes of an individual that do not

change with time (e.g. educational background, chronic illness, socioeconomic status) or

change in a deterministic way (e.g. age). We have already noted that it is typically unnatu-

ral to associate any holding time with transitions from situations representing time-invariant

covariates. This implies that the edges emanating from these situations would not have any

associated holding time variables.

However, an event tree suppose a strict total ordering of events along any of its

walks. A strict total ordering of say v ≺ v′, for Λ(v, v′) , ∅, implies that v is upstream
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of v′ in the event tree and v′ � v. This ordering is typically chosen such that it allows

for causal interpretations to be made from the event tree and its CEG. In this case, we can

interpret that v ≺ v′ implies that v happens before v′. However, statistically, the event tree

model does not inherently imply such a temporal ordering of the events. Viewed as simply

a statistical model, the event tree can have any strict total ordering of its events without

an associated real-world interpretation to go along with it. Indeed, this issue also arises in

BNs where on the one hand it can be viewed as a computational vehicle for representing

probability distributions with a visually intelligible graphical interface, and on the other,

it can be viewed as a causal model where the directionality of the edges represents causal

links (Korb & Nicholson, 2008). This is further complicated by the fact that BNs encoding

the same probabilistic information might lead to different real-world interpretations when

considered to be causal (Chickering, 1995; Korb & Nicholson, 2008). Causal discovery

with CEGs for processes where these is no natural real-world ordering of the variables has

been considered in Cowell and Smith (2014).

It is interesting here to note that the Christchurch Health and Development Study

(CHDS) (Fergusson et al., 1986) application often used in the CEG papers (Barclay et al.,

2013; Cowell & Smith, 2014; Collazo et al., 2018) models four variables all of which are

time-invariant. Cowell and Smith (2014) demonstrated how an order can be chosen among

these four variables for the CHDS process by maximising the chosen score function (there,

the log marginal likelihood score).

We take the approach here of choosing the ordering aligned with the real-world

settings of the process whenever it is possible to do so, and choosing the ordering that

maximises the chosen score function (as in Cowell and Smith (2014)) when there is no as-

sociated real-world ordering available. Choosing the appropriate ordering of time-invariant

covariates typically falls within the latter category. We would generally choose to place

all vertices representing time-invariant covariates upstream of vertices representing events

evolving in continuous time. Just as in Cowell and Smith (2014), an ordering among these

vertices may then be chosen such that it maximises the model log marginal likelihood score

(or any other chosen score function).

Recall from Section 5.1 that due to their Markov property, the implicit assumption

made by a DCEG or a vanilla CEG modelling time-invariant covariates would be that their

associated emanating edges have holding times that are governed by geometric (in discrete

time processes) or exponential (in continuous time processes) distributions. Our implicit as-

sumption here is less restrictive and simply states that the holding times associated with the

edges of any time-invariant covariates are independent and identically distributed. Hence,

they have no discriminatory power and need not be explicitly considered for model selection

or inference (see Sections 5.3 and 5.6). Thus for two situations in the event tree represent-
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ing time-invariant covariates to be in the same stage, only the first condition specified in the

definition of a stage needs to be satisfied as the second is satisfied by default.

Example 5.9. (Infection example continued) Observe that in the event tree describing the

infection process in Figure 5.1, vertex v0 represents the time-invariant covariate of an in-

dividual’s living arrangements. Suppose that this event tree has the following collection of

stages:

U = {u0, u1, u2, u3, u4, u5, u6, u7} where

u0 = {v0}, u1 = {v1, v11, v15, v17, v19, v21, . . .}, u2 = {v2, v13, . . .},

u3 = {v3, v4, . . .}, u4 = {v5, . . . , }, u5 = {v6, . . . , }, u6 = {v7, v9, . . . , }, u7 = {v8, v10, . . .}.

In the staged tree for this process, each stage ui, 0 ≤ i ≤ 7 is assigned a unique colour.

In this example, all situations in the same stage are also in the same position, i.e. W = U

where for wi ∈ W we have wi = ui for 0 ≤ i ≤ 7. For instance, situation v1 and v11 have

infinitely large rooted subtrees which are isomorphic in the colour and structure preserving

sense, and hence they are in the same position.

Figure 5.3 shows the graph of the CT-DCEG for the infection example. Vertices

representing position wi ∈ W are labelled as wi in the graph, for 0 ≤ i ≤ 7 and the leaves

are collected into the sink w∞. While we do not do so here, note that when the collection of

positions and stages are equivalent, the vertex colouring in the graph of the CT-DCEG can

be suppressed without any loss of information.

Figure 5.3: Graph of the CT-DCEG for the infection process.

5.2.2 Comparison with Existing Models

A CT-DCEG is most closely associated with continuous time BNs (CTBNs) (see Section

2.3.1) and two classes of graphical models used for event history analysis.
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CTBNs were first proposed in Nodelman et al. (2002) as a continuous time alterna-

tive to DBNs. They overcome the issue of having to choose a fixed time granularity needed

to construct DBNs. For many real-world processes, different components of the process

evolve on different time scales and hence, describing the entire process using a fixed time

granularity may not be appropriate. CTBNs, on the other hand, describe structured stochas-

tic processes with a finite state space as they evolve over continuous time. The model is

initiated with a vanilla BN and the dynamics of the evolution are described through a di-

rected and possibly cyclic graph. The CTBN models each variable (represented by a node

in the graph) as a finite state, continuous time Markov process whose transition intensities

are determined by the current value of its parents in the graph as well as its own current

value. These transition intensities are contained within a conditional Markov intensity ma-

trix. However, a major shortcoming of CTBNs, as they were originally described, is that the

holding time in a given state – where a state is simply a realisation of one of its variables –

is always described by an exponential distribution. This issue arises by design as a Markov

process naturally has an exponential holding time random variable for each state, although

the parameters are allowed to vary between states. Additionally, similar to BNs, CTBNs

rely on variable-based descriptions. They embed structural zeros within their conditional

intensity matrices, and are unable to encode structural missing values. Recall that in Section

4.1 we have already discussed the limitations of variable-based descriptions of asymmetric

processes.

There have been several notable efforts to relax the exponential restriction on the

holding time distributions of CTBNs. Nodelman and Horvitz (2003), Gopalratnam et al.

(2005), and Nodelman et al. (2005) approximate arbitrary holding time distributions in

the CTBN with phase-type distributions by adding exponentially distributed hidden states

called “phases” to their conditional intensity matrices. Other methods involve adding hid-

den variables to the CTBN (Nodelman et al., 2005; Liu et al., 2018) and adding holding

time variables known as “clocks” (Engelmann et al., 2020). The latter is most similar to

CT-DCEGs. Just as in a CT-DCEG, it adopts the approach of explicitly modelling holding

times as random variables which can have arbitrary distributions rather than them being

implicitly exponential through the conditional intensity matrix construction. Under this

approach, a CTBN with clocks is built using continuous time semi-Markov (rather than

Markov) processes with each variable having an unconditional holding time distribution

and thus, allows for closed form parameter estimation and model selection when using

conjugate distributions.

Despite the similarities, CT-DCEGs and CTBNs are different in the type of pro-

cesses for which they are best suited. Apart from not being able to explicitly accommodate

structural zeros and structural missing values, there does not exist a method of exploring
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conditional independencies within a CTBN. This is because the CTBN has a variable-based

description, and so exploring conditional independencies within its structure is complicated

by the fact that over its temporal evolution, the states of all the variables become correlated.

This problem is typically referred to as temporal entanglement (Boyen & Koller, 1998;

Nodelman et al., 2002). Hence, a CTBN suffers from the same shortcomings as a BN in

expressing context-specific conditional independencies within its graph topology. Further,

in a CTBN the state of a variable depends on the current state of its parents and that of

itself, and the holding times variables describe the time taken to transition between states

of the same variable. This is vastly different to the way a CT-DCEG models a process.

Finally, while CTBNs do not allow multiple transitions to occur at the same time, they do

not otherwise require any ordering in the transitions experienced by its variables. Hence,

a CTBN is preferable for processes without significant structural asymmetries where the

interest is in modelling the state of a dynamic system as a whole, and where the interest

is in modelling holding times from a variable assuming one value to another. Whereas, a

CT-DCEG is more suitable to dynamic processes which naturally follow a total (strict or

otherwise) ordering of the events which transpire during the evolution of the process, and

where the flexibility of allowing arbitrary holding time distributions for each event (rather

than each variable) might be useful.

We next move our attention to graphical models for the analyses of event history

data. Event history data consist of sequences of certain events of interest along with their

time of occurrence. Graphical models used to represent the events contained in such data

were first introduced as graphical duration models (Gottard, 2007) and as local indepen-

dence graphs (Didelez, 2008). Note that the concept of local independence was first in-

troduced by Schweder (1970) and later generalised by Aalen (1987). Consider finite state

space stochastic processes X = {Xt}, Y = {Yt} and Z = {Zt} which evolve over continu-

ous time such that multiple transitions cannot occur simultaneously. We can say that X is

locally independent, over some time interval, of Y given Z if given the information about

whether and when events have occurred in Z in the time interval, the transition intensities

for changes in X are independent of the value of Y for all time in the interval. Hence,

local independence is one-sided and not symmetric whereas stochastic independence (de-

scribed in Section 2.2.2 as independence) is symmetric. Both the graphical duration and

local independence graphs model the data by marked point processes and the graphs rep-

resenting these models depict the marks or events as vertices. Graphical duration models

represent the conditional independence structure of the data using a special class of chain

graph models and they represent both local and stochastic independence structures using

a combination of directed and undirected edges. On the other hand, local independence

graphs, as the name suggests, represent local independencies where directed edges depict
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local dependence. While these graphs model processes that are very similar to those mod-

elled by CT-DCEGs and are able to represent context-specific information, their framework

does not allow for expressing how conditional independence relationships can change over

time. In fact, modelling of local dependence makes the independence structures repre-

sented by these graphs more similar to DBNs. Further note that in these graphs, the events

are represented by vertices whereas in the CT-DCEG they are represented by edges.

We now briefly describe alternative graphical models for processes evolving in con-

tinuous time. Event-driven CTBNs (Bhattacharjya, Shanmugam, et al., 2020) model the

effect of irregularly occurring external events on the evolution of the system variables of a

CTBN (e.g. frequency of meals and physical activities affecting a diabetic patient’s blood

glucose level) by modelling the events as nodes within the CTBN with specified conditional

intensity rates. They suffer similar shortcomings to CTBNs. Piecewise-constant conditional

intensity models (Gunawardana et al., 2011) are a class of marked point processes that cap-

ture the temporal dependence of an event – represented by a decision tree – on past events

through a set of piecewise-constant intensity functions. From Qin and Shelton (2015), we

can infer that these models can express context-specific independencies through their de-

cision tree representations. However, similar to staged tree (see Section 3.1.2), they can

easily get unwieldy for large processes with significant asymmetries. Graphical event mod-

els (Meek, 2014) constitute of a dynamic directed graph over a set of events where the

edges represent potential dependencies, and a statistical model whose parameters are the

intensity functions for each event conditioned on its parent events. These models are sim-

ilar to the other graphical models for event history data discussed above and suffer from

similar limitations. State variable graphical event models (Bhattacharjya, Subramanian, et

al., 2020) are a flexible modelling framework that extends event-driven CTBNs/CTBNs to a

non-Markovian setting and generalise graphical event models. The exact nature of the non-

Markovian dependence is to be defined by the modeller, and this choice affects the scope

and limitations of the model. Lastly, we discuss temporal nodes BNs (TNBNs) (Arroyo-

Figueroa & Sucar, 1999) are a visionary but currently underdeveloped class of graphical

models. A TNBN contains temporal nodes which are ordered pairs of the realisation of

a variable and the time interval for which it assumes this value, similar to the concept of

holding times. Although some properties of propagation in a TNBN are similar in intuition

to that in a CT-DCEG (see Section 5.6), they are presented in a non-technical way with no

formal justification. Primarily, similar to a CT-DCEG, evidence in the TNBN leads to the

creation of a simpler TNBN, and temporal evidence leads to a revision of past transition

probabilities. However, the TNBN has several shortcomings. The occurrence of an event

at a particular instant does not constitute direct evidence in a TNBN (Galán & Dı́ez, 2002).

Further, TNBNs lack the formalisation of standard models used for temporal processes.
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5.3 Conjugate Learning and Model Selection

5.3.1 Conjugate Learning

We shall now consider conjugate updating of the parameters of a CT-DCEG model. The

work presented in this subsection is analogous to the conjugate updating described in Bar-

clay et al. (2015) for extended DCEGs. Here we show that it extends to the entire CT-DCEG

class in a straightforward way. The conjugate updating will be necessary for the model se-

lection methodology presented in Section 5.3.3.

Consider a CT-DCEG D which has no vertices representing time-invariant covari-

ates. Let U = {u1, u2, . . . , uk} be its collection of stages such that each stage ui has ki em-

anating edges. Suppose we have a complete random sample of n individuals. For each

individual 1 ≤ m ≤ n, their data is given by the following sequence of tuples

ρm = ((em
j1k1
, hm

j1k1
), (em

j2k2
, hm

j2k2
), . . . (em

jlm klm
, hm

jlm klm
)),

where the first element of each tuple represents the edge traversed by the individual such

that e jk represents the individual traversing kth edge emanating from vertex v j, and the

second element gives the holding time associated with that edge. Here we assume that

for each individual m where 1 ≤ m ≤ n, the vertex v j1 always corresponds to the root

vertex of the graph of the CT-DCEG. The data from the n individuals can be summarised

as y = {y1, y2, . . . , yk} where yi = (ni,hi) corresponds to the observations for stage ui,

i = 1, 2, . . . , k. Here, ni = (ni1,ni2, . . . ,niki) and hi = (hi1,hi2, . . . ,hiki) where ni j and hi j

correspond to the observations for the jth edge emanating from stage ui for 1 ≤ j ≤ ki.

Each ni j is a vector of ones with length equal to the number of individuals n̄i j who traverse

the jth edge emanating from stage ui, and hi j is a vector of the holding times for each of the

n̄i j individuals.

Denote the conditional transition parameters for stage ui by θθθi = {θi1, θi2, . . . , θiki}

and let ΦΦΦD = {θθθi|ui ∈ U}. Let the conditional holding time random variable for the jth

edge emanating from stage ui be parametrised by πi j. Then πππi = {πi1, πi2, . . . , πiki} is the

vector of conditional holding time parameters for stage ui. Let ΠΠΠD = {πππi|ui ∈ U}. Assuming

a complete random sample, the likelihood of the CT-DCEG D can be decomposed into a

product of the likelihood of each stage floret as follows:

p(y |ΦΦΦD,ΠΠΠD,D) =

k∏
i=1

p(yi |θθθi, πππi,D). (5.1)

As in the case of vanilla CEGs in Section 3.2.1, we assume here that the conditional tran-

sition and holding time parameters are a priori mutually independent. Of course, in certain
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scenarios this assumption might not hold but we consider the simplest scenario here. It

follows under the separability of the likelihood above that they will also be mutually inde-

pendent a posteriori. With this we can write

p(yi |θθθi, πππi,D) =

ki∏
j=1

p(ni j,hi j | θi j, πi j,D)

=

ki∏
j=1

p(hi j | πi j,D)p(ni j | θi j,D)

=

ki∏
j=1

n̄i j∏
l=1

{
p(hi jl | πi j,D) × p(ni jl | θi j,D)

}
. (5.2)

Thus the likelihood of the model separates into the likelihoods of the conditional

transition and conditional holding time parameters. This conveniently allows us to estimate

the conditional transition and conditional holding time parameters independently.

The conditional transition parameters can now be updated exactly as in Section

3.2.1. We shall not repeat that here in the same detail. Suffice to say that θθθi has a Dirichlet

prior distribution with hyperparameter αααi = (αi1, αi2, . . . , αiki) and a Dirichlet posterior

distribution with hyperparameter ααα∗i = (α∗i1, α
∗
i2, . . . , α

∗
iki

) where α∗i j = αi j + n̄i j for 1 ≤ i ≤ k

and 1 ≤ j ≤ ki.

Assume that the continuous conditional holding times for stage ui ∈ U come from a

Weibull distribution with known shape parameter κi j and unknown scale parameter πi j, for

1 ≤ i ≤ k and 1 ≤ j ≤ ki. This gives us

p(hi j | πi j,D) =

n̄i j∏
l=1

p(hi jl | πi j,D)

=

n̄i j∏
l=1

κi j

πi j
(hi jl)κi j−1 exp

(
−hi jl

κi j

πi j

)
. (5.3)

Under a conjugate setting, the scale parameter πi j of the Weibull distribution, has an Inverse-

Gamma prior distribution with shape hyperparameter βi j and scale hyperparameter γi j. The

density of this prior distribution is given as follows

p(πi j|D) =
γi j

βi j

Γ(βi j)
(πi j)−βi j−1 exp

(
−γi j

πi j

)
. (5.4)
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Thus we can find the posterior of πi j as

p(πi j|hi j,D) ∝ p(πi j|D)
n̄i j∏
l=1

p(hi jl|πi j,D)

∝ πi j
−βi j−1 exp

(
−γi j

πi j

) n̄i j∏
l=1

1
πi j

exp
(
−hi jl

κi j

πi j

)
= πi j

−βi j−n̄i j−1 exp
(
−(γi j +

∑
l hi jl

κi j)
πi j

)
(5.5)

which is an Inverse-Gamma distribution with shape hyperparameter β∗i j = βi j + n̄i j and scale

hyperparameter γ∗i j = γi j +
∑n̄i j

l=1(hi jl)κi j .

The marginal likelihood of the model is available in closed form as

p(y|D) =

∫
ΠΠΠD

k∏
i=1

ki∏
j=1

{
p(hi j|πi j,D)p(πi j|D)

}
dΠΠΠD ×

∫
ΦΦΦD

k∏
i=1

{
p(ni|θθθi,D)p(θθθi|D)

}
dΦΦΦD

=

k∏
i=1

{
Γ(β∗i j)(γi j)βi j(κi j)n̄i j

∏
l(hi jl)κi j−1

Γ(βi j)(γ∗i j)
β∗i j

×
Γ(ᾱααi)
Γ(ᾱαα∗i )

ki∏
j=1

Γ(α∗i j)

Γ(αi j)

}
. (5.6)

We now extend the above discussion to consider the inclusion of time-invariant co-

variates in the CT-DCEG. Suppose that the CT-DCEGD also has time-invariant covariates.

Further, let ui for 1 ≤ i ≤ k′ < k represent the stage sets of situations with holding times and

ui for k′ < i ≤ k represent the stage sets of situations without holding times (precisely those

representing time-invariant covariates). Then we can simply modify the marginal likelihood

of the model given in Equation 5.6 as

p(y|D) =

k′∏
i=1

{
Γ(β∗i j)(γi j)βi j(κi j)n̄i j

∏
l(hi jl)κi j−1

Γ(βi j)(γ∗i j)
β∗i j

}
×

k∏
i=1

{
Γ(ᾱααi)
Γ(ᾱαα∗i )

ki∏
j=1

Γ(α∗i j)

Γ(αi j)

}
. (5.7)

Note that we have chosen a Weibull conditional holding time distribution above for

the convenience of a conjugate analysis. Within this, we assume that the shape parameter

is known. The shape parameter κ of a Weibull distribution can be interpreted as follows:

κ = 1 simplifies to the exponential distribution where the rate of transition is assumed to

be constant, κ < 1 indicates that the rate of transition decreases with time whereas κ > 1

indicates that the rate increases with time. The transition rate determined by the shape

parameter of the Weibull conditional holding time distribution along an edge is not to be

confused with the conditional transition probability of the edge which gives the limiting

probability of an individual actually going through that specific transition along that edge.

Other conjugate distributions (such as the exponential and Gamma, or log-Normal with
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known precision and Normal) may also be used. A non-conjugate analysis with an arbitrary

holding time distribution which do not have a conjugate prior is also possible using MCMC

methods and is discussed further in Chapter 7. This work is ongoing and is not reported in

detail within this thesis. A Bayesian non-parametric treatment of the holding times is also

possible, see for example Kalbfleisch (1978) and Muliere and Walker (1997).

5.3.2 Prior Specification

The hyperparameters (αi1, αi2, . . . , αiki) for the Dirichlet priors for θθθi associated with stage ui

can be set using the mass conservation property and the imaginary sample size as described

in Section 3.2.2.

We next look into specifying the hyperparameters for the unknown scale parameter

of the Weibull holding time distribution. Recall first that πi j is the scale parameter of the

Weibull distribution (with known shape parameter κi j) followed by the conditional holding

time variable on the jth edge emanating from some representative situation in stage ui. The

hyperparameters βi j and γi j of the Inverse-Gamma prior distribution for πi j are directly

linked to the expected mean and variance of the holding times along its associated edge

(Barclay et al., 2015). If there is prior domain knowledge, this can be incorporated into the

hyperparameters by eliciting the expected mean and variance from the domain experts.

When such information is not available, we may determine how to set these hy-

perparameters based on how they are updated in the conjugate prior-to-posterior analy-

sis. Since, the shape hyperparameter βi j is updated in the same way as the corresponding

Dirichlet hyperparameter αi j, we can set βi j to be equivalent to αi j. This is analogous to

the approach taken by Barclay et al. (2015). The scale hyperparameter γi j is updated as

γ∗i j = γi j +
∑n̄i j

l=1(hi jl)κi j . Similar to the interpretation of the Dirichlet hyperparameters as

“pseudo-counts” or the strength of the prior belief, we could set the scale hyperparameter

as ιi j
κi j where we interpret ιi j as a “pseudo-holding time”. This approach applies a similar

treatment to our pseudo-holding time as we do for any observed holding time under the

conjugate analysis. We note here that Barclay et al. (2015) present an alternative approach

for setting the scale hyperparameter of the Inverse-Gamma distribution. They set a common

prior mean of 1 for each Inverse-Gamma distribution. As the mean of the Inverse-Gamma

is given by γi j
(βi j−1) , the scale parameter γi j is effectively set as βi j − 1.

Recall that for model selection using the AHC algorithm (see Section 3.2.3), each

situation in the event tree is initially considered to be a singleton stage and at each step,

stages offering the best improvement to the log marginal likelihood score are merged to-

gether. For an infinite event tree, prior setting as described above becomes an impossible

task. Barclay et al. (2015) addressed this issue by describing how the hyperparameters can

be set for a given candidate extended DCEG model. The Dirichlet hyperparameters can be
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set based on the limiting distribution of the Markov process associated with the extended

DCEG without considering its holding time distributions. This method is useful if we have

a small finite number of candidate models that we wish to compare. If our model selection

is to start from the event tree itself as is typically done in the vanilla CEG case, we need

heuristic approaches to make searching through the vast model search space of a CT-DCEG

feasible. We describe one such special case of model selection in the next subsection.

5.3.3 Model Selection

Model selection in the CEG family is equivalent to identifying the collection of stages as a

CEG is completely defined by its staged tree as described in Section 4.3. The CT-DCEG

model search space is extremely vast as it has an underlying event tree that is infinitely

large. To search through this space effectively, we need to restrict it to the models which

are of practical interest.

In this thesis, we consider a special case of finite CT-DCEGs in which model selec-

tion is simplified. We first need to define two new concepts of an invariant subtree and a

repeating subtree. These enable an object-oriented description of the continuous time infi-

nite event tree. Object-oriented approaches have been very successful for modelling large

complex processes and to speed up inference. See Koller and Pfeffer (1997) and Bangsø

and Wuillemin (2000) for object-oriented BNs, and Collazo (2017) for a detailed object-

oriented approach to discrete time DCEGs.

Definition 5.10 (Invariant Subtree). Say that a subtree T I of an event tree T rooted at v0

– the root of T – is invariant if it is the largest subtree such that all events described by T

appear at most once along each root-to-leaf walk in T I
Λ

.

If the edge labels are assigned such that no two distinct events have the same edge

label (e.g. labelling as “high (low) risk” and “high (low) socio-economic status” rather

than “high (low)” for both), the condition in the above definition simplifies to an edge label

appearing at most once along each root-to-leaf walk in T I
Λ

. The invariant subtree thus

describes all the events that might be experienced by an individual, along any walk starting

from the root, before they observe some event for the second time. For a finite CT-DCEG,

the invariant subtree of its underlying event tree will also be finite.

Definition 5.11 (Repeating Subtree). Say that a subtreeT R of an event treeT is a repeating

subtree if it is rooted at a leaf of the invariant subtree and it is the largest subtree such that

all events described by T appear at most once along each root-to-leaf walk in T R
Λ

.

Thus a repeating subtree is in fact part of the invariant subtree. This makes the term

“invariant” slightly imprecise as each repeating tree is itself a subtree of the invariant tree.
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While an event tree has only one invariant subtree, it can have multiple distinct repeating

subtrees rooted at different leaves of the invariant subtree. Denote by R(T ) the collection

of distinct repeating subtrees of the event tree T .

Example 5.12 (Infection example continued). For the infection process, the invariant sub-

tree is given by the subtree induced by the vertices in the set {vi}, 0 ≤ i ≤ 22. This is

isomorphic to the event tree in Figure 5.1 without considering the three dots indicating the

repetitions in the dynamic process. The repeating subtrees are shown in Figure 5.4.

Figure 5.4: The subtrees show the two repeating subtrees for the infection process.

Notice how the concepts of invariant and repeating subtrees are closely associated

with the idea of time-slices in discrete time dynamic models. The invariant subtree cor-

responds to the initial “time-slice” and the repeating subtrees are utilised to describe all

the subsequent “time-slices”. In this way, it shares some similarities with a 2-time-slice

DBN (see Section 2.3.1) which is described by an initial BN and a transition model. This

discussion is continued in Section 5.5 where we present a continuous time analogue of

time-slices.

In the simplest case we can assume that the parameters of each repeating subtree

are equivalent to the parameters of the subtree of the invariant tree to which it is structurally

isomorphic. Such an assumption greatly simplifies the model selection process. It implies

that the repeating parts of the underlying infinite event tree are not only structurally but also
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parametrically equivalent. Under this assumption, observations associated with the repeat-

ing subtrees can be pooled with the corresponding observations for the invariant subtree for

model selection and parameter estimation. Hyperparameter specification for the Dirichlet

priors on the invariant subtree proceeds as in Section 3.2.2 and for the Inverse-Gamma pri-

ors as in Section 5.3.2. Identifying the collection of stages for the invariant subtree with the

pooled data follows the procedure described in Section 3.2.3 for the vanilla CEG, using the

marginal likelihood (or equivalently, its logarithm) given in Equation 5.7 as the score to be

maximised. To obtain the graph of the CT-DCEG we first follow a construction from the

staged invariant tree which is identical to the construction of a CEG from a staged tree (see

Section 4.3). However, this would result in the cyclic edges also being collected into the

sink vertex. To obtain the graph of the required CT-DCEG from this CEG, we would need

to change the vertex entered by each cyclic edge with reference to the repeating subtrees.

There are several processes for which such an assumption might not be appropriate.

For instance, the graphical structure of the model depicting the process might be fixed but

the parameters of the distributions might change depending on the time index itself in a

regular pattern (e.g. age related changes each year) or irregularly (e.g. irregularly occurring

external events such as shortage of medications or reduction in funding for a specific type

of treatment). In other cases, the structure of the graph itself may also be subject to change

over time. Such changes are relatively easier to implement in a discrete time setting (see

e.g. J. W. Robinson and Hartemink (2008) and Grzegorczyk and Husmeier (2009) for non-

stationary DBNs, and Freeman and Smith (2011b) for dynamically evolving staged trees)

than in continuous time. Hence, in this thesis, we begin by exploring model selection in CT-

DCEGs within this simplified setting. A detailed discussion on this is presented in Section

5.8.

Example 5.13 (Infection example continued). The above assumption would imply in our

infection process for instance that for an individual in the community the probability of

recovering from strain i (i = 1, 2) after receiving treatment j ( j = 1, 2) is not dependent

on being infected by any strain of this virus before. Under our previous assumption of no

immunity acquired by infection, this new assumption would appear to be sensible. This

assumption enables us to consider each bout of infection for an individual independently

and thus adds to the data available to compare models and to estimate parameters. For

instance, if we observed an individual in the community who got infected three times and

another individual, also in the community, who got infected twice, with the independence

assumption it is equivalent to having observed a single bout of infection in five individuals

in the community.
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5.4 A Semi-Markov Representation

Before discussing inference for the CT-DCEG class, it is of interest to note that CT-DCEGs

have an alternative representation as a semi-Markov process (SMP). This section extends

the work presented in Barclay et al. (2015) where extended DCEGs whose graphs are sim-

ple graphs were shown to have an SMP representation. Since the state transition diagram of

an SMP must necessarily be a simple graph (loops, however, are allowed), the translation

of an extended DCEG with a simple graph into an SMP is relatively straightforward. Here

we show how all CT-DCEGs (including the extended DCEG subclass) have an alternative

SMP representation even when their graphs are multigraphs. Such an SMP representa-

tion, however, is an approximation of the CT-DCEG model when its graph is a multigraph.

The associated SMP representation of a CT-DCEG allows us to leverage well-developed

methodologies from the SMP literature to answer queries for which either corresponding

CT-DCEG techniques are yet to be developed or where a macro-level estimate obtained

from the, often approximate, SMP representation is sufficient.

An SMP has two simultaneously evolving sub-processes. One concerns the state

occupied by an individual, the other the time spent in each state. Consider a stochastic

process Z = {Zt, t ≥ 0} on a discrete state space S. The state occupied at the nth transition

is given by X = (Xn)n∈N, the jump times by T = (Tn)n∈N and the holding time in Xn before

moving to Xn+1 by τ = (τn)n∈N where τn = Tn − Tn−1. The process Z is an SMP when

p(Xn+1 = j, τn+1 ≤ t | Xn, . . . , X0; τn, . . . , τ1) = p(Xn+1 = j, τn+1 ≤ t | Xn = i), (5.8)

where n ≥ 1, t ≥ 0 and i, j ∈ S. The process X is called the embedded Markov chain

with transition probability matrix P = (pi j) where pi j = p(Xn+1 = j | Xn = i). An SMP is

completely defined by its renewal kernel Q(t) = [Qi j(t) | i, j ∈ S] and its initial distribution

p = [pi | i ∈ S] where pi = p(X0 = i). The (i, j)th entry of the renewal kernel Q is

Qi j(t) = p(Xn+1 = j, τn+1 ≤ t | Xn = i) = pi jFi j(t), (5.9)

where Fi j(t) = p(τn+1 ≤ t | Xn+1 = j, Xn = i) is the cumulative distribution function of the

random variable representing the holding time in state i before transitioning to state j.

Thus in an SMP, the successive states occupied are determined by the transition

probabilities of its embedded Markov chain whereas the holding times are dependent on

the current state and the state occupied next. This allows the flexibility to use arbitrary

non-exponential (in continuous time) or non-geometric (in discrete time) holding time dis-

tributions. The Markov property is only required at the transition times between the states.

Hence, an SMP is not strictly Markovian (Moura & Droguett, 2008).
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First we consider a CT-DCEGD = (V(D), E(D)) with no time-invariant covariates.

Let the SMP representation corresponding to the CT-DCEG D be given by the stochastic

process Z with state space given by S = V(D). A transition from state vi to state v j for

vi, v j ∈ S is possible if and only if there exists at least one edge between vi and v j in E(D)

for vi, v j ∈ V(D). Recall that while the graph of a CT-DCEG can be a multigraph, the

state transition diagram of an SMP must be a simple graph although loops are permitted.

Suppose there exist m edges from vertex vi to vertex v j in E(D), denoted as edges ei jl where

1 ≤ l ≤ m. Let edge ei jl have conditional transition parameter θi jl and holding time random

variable Hi jl. We can then set the transition probability from vi to v j in the SMP as follows

pi j =

m∑
l=1

θi jl, (5.10)

and the holding time distribution, denoted by the variable G, at state vi conditional on a

transition to state v j as the following finite mixture distribution

fG(t) =

m∑
l=1

θi jl fHi jl(t), (5.11)

where fHi jl is the probability density associated with holding time variable Hi jl.

Notice that combining multiple edges with the same directionality between two ver-

tices, say vi and v j for the SMP representation results in losing some information embedded

in the CT-DCEG model. Hence, in the case where the graph of the CT-DCEG is not simple,

such an alternative representation is only an approximation. We next prove that the SMP

obtained from the process detailed above is valid.

Theorem 5.14. The SMP representation Z of a CT-DCEGD = (V(D), E(D)) with no time-

invariant covariates, as described above, satisfies the definition of a semi-Markov process.

Proof. By construction, the representation Z of the CT-DCEGD has state space S = V(D).

Recall that an SMP is completely defined by its initial distribution and its renewal kernel.

Let vi, v j ∈ S. The transition matrix P = (pi j) for the SMP Z is given by entries

pi j =

θ
∗
i j, if1D(vi → v j) = 1

0, otherwise

where 1D(vi → v j) indicates whether there exists at least one edge from vi to v j in the

CT-DCEGD and θ∗i j =
∑m

l=1 θi jl where θi jl is the transition probability associated with edge

ei jl, l = 1, . . . ,m for the m edges from vi to v j in D and m ≥ 1. The transition probabilities

for the emanating edges from each vertex vi ∈ S necessarily sum to 1 as the conditional
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transition parameters θi,·,· sum to 1 in the CT-DCEG model.

The cumulative conditional holding time distribution at edge ei j from state vi to

state v j in Z is

Fi j(t) = P(τi j ≤ t | Xn+1 = v j, Xn = vi), (5.12)

where the holding time τi j in Z is governed by the holding time mixture distribution G with

density given in Equation 5.11.

The entries of the renewal kernel Q(t) of the SMP representation Z are thus given

by

Qi j(t) = pi jFi j(t), (5.13)

and the initial distribution vector p has entry 1 for the state of Z where the individual

enters the system (conventionally this corresponds to the state representing the root vertex

of the CT-DCEG D) and 0 elsewhere. The renewal kernel Q(t) and initial distribution p

completely describe the stochastic process Z. �

Observe that if the CT-DCEG has a sink vertex w∞, this vertex represents an ab-

sorbing state in its associated SMP representation.

Example 5.15. The state transition diagram of the SMP corresponding to the CT-DCEG for

infection process in Figure 5.3, excluding its root vertex and the edges emanating from it,

is given in Figure 5.5. The edges (w1,w3, strain 1) and (w1,w3, strain 2) of the CT-DCEG

are combined into a single edge in the state transition diagram of the SMP. In the state

transition diagram, node w∞ is an absorbing state and the remaining states are transient.

Figure 5.5: State transition diagram of the SMP for the CT-DCEG of the infection process.

Further, if the inference query concerns only a subset of V(D), we can consider a

compact version of the SMP containing only vertices/states and edges that are relevant to
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the query. This is particularly useful when the CT-DCEG being considered is very large.

Such a compact representation is also generally an approximation of the process represented

by the CT-DCEG.

Suppose that an inference query concerns only a subset of vertices V† ⊂ V(D) of the

CT-DCEGD. To use SMP methodologies for this inference query, we construct a compact

SMP Z† with state space S† = V† as follows. Consider vertices vi, v j ∈ V†. If there exists

at least one edge between vi and v j in the CT-DCEG D, then the transition probability and

holding time distributions are derived as described above. If there is no edge between vi

and v j in the CT-DCEGD, suppose that there exists exactly one path λ(vi, v j) from vi to v j

such that the vertices between vi and v j on the path are not in V†. Since λ(vi, v j) is a path,

it visits both vi and v j exactly once each. This path can be condensed into an edge ei j from

states vi to v j in Z†. The transition probability from state vi to state v j and its associated

conditional holding time distribution (denoted by variable G) in Z† are given by

pi j =

n∏
l=1

θi jl, (5.14)

fG(t) = ( fi j1 ∗ . . . ∗ fi jn)(t), (5.15)

where n is the number of edges in the path λ(vi, v j), ∗ represents a convolution and fi jl is

the probability density associated with holding time variable Hi jl, 1 ≤ l ≤ n. Note that in

most cases convolutions of probability distributions cannot be solved analytically and will

have to be handled numerically.

If there are multiple paths from vi to v j in the CT-DCEG D, we first obtain the

holding time densities and the transition probabilities for the condensed edges created from

each of these paths. We can then combine them into a single edge as described in Equations

5.11 and 5.10.

Figure 5.6: Path from vertex vi to vertex v j via vertex vk.

Finally, we discuss how an SMP representation can be obtained for a CT-DCEG

with time-invariant covariates. This process is similar to the one described above for con-

structing a compact SMP. Suppose that the CT-DCEG D has vertices representing time-

invariant covariates denoted by VF(D) ⊂ V(D). For a valid SMP, we need to define a

conditional holding time distribution for each edge in the SMP. The state space S can be
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any proper subset of V(D) so long as a holding time distribution can be defined for each

edge. For instance, consider vi, v j ∈ S such that edge (vi, v j, ·) < E(D) but there exists a

directed path λ(vi, v j) from vi to v j inD through a vertex vk < S (see Figure 5.6). Further as-

sume that one of vi and vk represents a time-invariant covariate. Without loss of generality,

assume this is vertex vi. Thus edge ek j has a conditional holding time variable Hk j whereas

edge eik does not have any holding time associated with it. The transition probabilities and

conditional holding time distribution along the edge vi to v j are then obtained as described

in Equations 5.14 and 5.15 respectively.

Note here that a compact representation and incorporation of time-invariant covari-

ates into the SMP representation may only be obtained when there does not exist a directed

edge between a vertex vk and vl inD such that vl ∈ S, and vk < S lies on some directed path

λ(vi, v j) inD for any vertices vi, v j ∈ S which has been condensed into a single edge in the

SMP representation.

Example 5.16 (Infection example continued). Due to the reason described above, the root

vertex w0 in the CT-DCEG of the infection process in Figure 5.3, representing the time-

invariant covariate of an individual’s living arrangements, cannot be incorporated into its

SMP representation shown in Figure 5.5.

The difference between SMPs and CT-DCEGs is two-fold. Firstly, much like Markov

processes, the states and transitions of an SMP are typically defined at the beginning of the

analysis. Of course, if deemed necessary, states and transitions can be added or removed

from an SMP through an iterative process. However, this process can be cumbersome.

In contrast, a CT-DCEG construction begins by first eliciting – from the domain experts

or domain literature – the event tree describing the process. Through the identification of

stages and positions, we are then able to identify the vertex and edge sets of the graph of the

CT-DCEG. Secondly, by allowing multiple edges (with the same directionality) between

vertices, the CT-DCEG is able to express more information about the conditional holding

times of the different events associated with the edges that lead to the same outcome.

Nonetheless, an SMP representation allows us to easily answer queries such as first

passage times and recurrent visits to states for which well-developed methodologies already

exist in the semi-Markov literature; see for example Weiss and Zelen (1965), Janssen and

Manca (2006), and Barbu and Limnios (2008) for the more commonly used frequentist SMP

methods, and Butler and Huzurbazar (2000), Epifani et al. (2014), and Warr and Woodfield

(2019) for a Bayesian treatment of SMPs. The alternative SMP representation, particularly

when the representation is approximated by merging edges and vertices, enables us to get

a macro-level view of the process modelled by the CT-DCEG. The construction of the CT-

DCEG may also be used as the preliminary step in an SMP analysis to elicit the required
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states and transitions for the SMP (Barclay, 2014). Further, as we shall demonstrate in

Section 5.6, the semi-Markov representation is an integral part of our proposed CT-DCEG

probability propagation scheme.

5.5 Unrolling a CT-DCEG

We next discuss the process of unrolling a CT-DCEG. This is analogous to unrolling a

discrete time DCEG (Collazo, 2017) or a DBN (Kjærulff, 1992). Being able to unroll a dy-

namic process is particularly useful for performing inference as we shall see in Section 5.6.

In a CT-DCEG D, say that w � w′ if the shortest walk from the root vertex w0

to w contains fewer or the same number of edges as the shortest walk from w0 to w′, for

w0,w,w′ ∈ V(D).

Definition 5.17 (Cyclic Edge). An edge e = (w′,w, ·) from a vertex w′ to another vertex w

is said to be a cyclic edge if w � w′.

Note here that loops which are edges of the form e = (w,w, ·) are also cyclic edges.

Next we define passage-slices which are analogous to time-slices in discrete time processes.

According to Kjærulff (1992), dynamic models for a complex system may be defined as a

sequence of submodels such that each submodel represents the state of the entire system at

a specific time point or during a specific time interval. Each such time point or time interval

is then referred to as a time-slice. Thus for a complex process described by a collection

of random variables, the dynamic model represents repeated observations of these random

variables and any given time-slice represents only a single observation of each of these

random variables.

In the first instance it might appear appealing to describe passage-slices within a CT-

DCEG using the concept of a stopped process. For a stochastic process X, its corresponding

stopped process Xt is given by the development of X up to the stopping time t for some

t > 0. However, different walks – all starting from the root vertex – may evolve on very

different time scales. This is dependent on the holding time distributions along the edges

making up the walk. This makes it difficult, if not impossible in most cases, to choose a

sequence of times t1, t2, t3, . . . such that none of the possible walks that can be traversed by

any individual in each of the time intervals [0, t1), [t1, t2) and so on contain not more than

one occurrence of the same type of event, and such that the set of walks in the time intervals

[t1, t2), [t2, t3) and so on are equivalent.

So we attempt to define passage-slices directly from the topology of the CT-DCEG.

This adds to the convenience of being able to draw the unrolled process and do a preliminary

visual analysis of the unrolled graph by only using the coloured graph of the CT-DCEG
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without having to reference the estimated parameters of the underlying process. We present

such a description of a passage-slice below.

Definition 5.18 (Passage-Slice). The first passage-slice P(1) of a CT-DCEG D is the sub-

graph of the graph of the CT-DCEG obtained by deleting its cyclic edges. The subsequent

passage-slices P(k) are identical for k = {2, 3, . . .}. Each passage-slice P(k) is a collection

of connected components, each of which is a subgraph of the graph of the CT-DCEG. Each

subgraph is rooted at a vertex into which a cyclic edge from first passage-slice P(1) enters

and it contains all vertices and edges on walks starting from this vertex until another cyclic

edge or the sink vertex is reached along each of the walks.

It follows from the definition of passage-slices that consecutive passage-slices are

connected by the set of cyclic edges. The first passage-slice of a CT-DCEG is isomor-

phic to the CEG of the invariant subtree of its underlying event tree with the cyclic edges

removed (see Section 5.3.3). Similarly, each connected component of passage-slice P(k),

k = {2, 3, . . .} is isomorphic to the CEG of a repeating subtree, again with the cyclic edges

removed. Also observe here that events that occur only once (e.g. typically those associated

with time-invariant covariates) in the process are only part of the invariant subtree and not

the repeating subtrees.

For a CT-DCEG D, denote its set of cyclic edges by ε ⊂ E(D). Any finite CT-

DCEG can be “unrolled” by connecting its passage-slices with the cyclic edges. To begin

with, we consider unrolling the graph of the CT-DCEG from the first passage-slice P(1) up

to the desired passage-slice P(k), k > 1. The process is straightforward. Beginning with

the first passage-slice, we connect the consecutive passage-slices with the cyclic edges and

collect all the terminating walks into a common sink vertex w∞. Additionally, all the leaves

of the final passage-slice P(k) are also collected into the sink vertex. Unrolling in this way

gives us a CEG (evolving in continuous time) of the process from the first to the kth passage-

slice. We denote this as the CEG CP(1:k). Figure 5.7 shows a diagrammatic representation

of the unrolling of a CT-DCEG from the first to the third passage-slices. Note that such a

CEG is generally not square-free (see Section 4.4).

Figure 5.7: Unrolled CT-DCEG from passage-slices 1 to 3, i.e. CP(1:3).
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Observe that the unrolled graph of a CT-DCEG generalises the original CT-DCEG

graph as it allows for different distributions of its parameters across its passage-slices.

Example 5.19 (Infection example continued). For the graph of the CT-DCEG in Figure

5.3, we have w1 ≺ w4, w1 ≺ w6, w1 ≺ w7 and w2 ≺ w5. Thus the edges e4,1, e6,1, e7,1 and

e5,2 are cyclic edges. Figure 5.8 shows the graph of CP(1:2), i.e. the graph the CT-DCEG

unrolled to the first two passage-slices, for the infection process.

Figure 5.8: CP(1:2) for the infection process. The shaded edges represent hospitalisations.

The CEG of an unrolled process need not be a minimal CEG. Recall that the graph

of a CEG is said to be minimal when each of its position sets are represented by exactly one

vertex. Consider the example below.

Example 5.20. Consider the CT-DCEG D in Figure 5.9(a). The vertex colouring for the

vertices representing singleton stage sets has been suppressed. The vertices w3 and w4

are in the same stage but not the same position as their infinite rooted subtrees are not

isomorphic. Figure 5.9(b) shows the CEG CP(1:2) of the CT-DCEG unrolled from the first to

the second passage-slice. In this CEG, the vertices w′2 and w′4 represent vertices w2 and w4

respectively in the second passage-slice. Here, they are in the same stage and also the same

position as they have isomorphic finite rooted subtrees with respect to the CEG. Hence, to

obtain the minimal representation of this CEG we would contract vertices w′2 and w′4 into a

single vertex.

A CT-DCEG can also be unrolled from the kth passage-slice P(k) to the (k + l)th

passage-slice P(k + l) for k, l ∈ N. Recall that the first passage-slice is the only one guar-

anteed to contain only one connected component. The remaining passage-slices will have

as many connected components as we have repeating subtrees. These passage-slices can
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(a)

(b)

Figure 5.9: (a) A CT-DCEG; (b) CEG CP(1:2) of the unrolled CT-DCEG.

still be unrolled as before but the graph thus obtained does not necessarily correspond to

any CEG model. This is because when we have more than one connected component, we

will have more than one vertex which has no parents and no incoming edges. The follow-

ing steps transform this graph denoted below as G = (V(G), E(G)) into a single CEG or a

collection of CEGs:

• If after removing the edges of the form (w,w∞, ·) ∈ E(G) entering the single sink

vertex w∞ the graph G decomposes into two or more connected components, we

can then transform each connected component Gi = (V(Gi), E(Gi)) into a CEG with

graph G∗i = (V(G∗i ), E(G∗i )) such that

V(G∗i ) = V(Gi) ∪ {w∞}

E(G∗i ) = E(Gi) ∪ {(w,w∞, ·) |w ∈ V(Gi), (w,w∞, ·) ∈ E(G)}.

In other words, each connected component gets its own sink vertex.
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• The graph of each connected component is reduced to its minimal representation by

merging vertices which are in the same position.

Example 5.21 (Example 5.20 continued). We consider the graph of the CT-DCEG in Figure

5.9(a) unrolled from passage-slice P(k) to passage-slice P(k + 1), for k ∈ N. By adding

another sink vertex w′∞, the graph can be represented as two distinct CEGs. The graphs

of the two CEGs thus obtained are shown in Figure 5.10. The vertex colourings show the

non-singleton stages within each CEG.

Figure 5.10: Graph of the CT-DCEG in Figure 5.9(a) unrolled from passage-slices k to k+1.

Example 5.22. We consider another example where the graph of the unrolled CT-CEG does

not directly decompose into multiple CEGs. Consider the CT-DCEG with the graph shown

in Figure 5.11(a). Here again the vertex colouring for the vertices representing singleton

stage sets has been suppressed. The graph of the CT-DCEG unrolled from passage-slices k

to k + 1, for k ∈ N is shown in Figure 5.11(b). We obtain a minimal representation of this

graph by merging w2 with w′2, and w′′2 with w′′′2 . The graph of the resultant CEG is given in

Figure 5.11(c).

We note that at first glance it might appear inappropriate to apply the concept of

a position in a graph that is not already a CEG. However, it might be more convincing to

view an unrolled CT-DCEG from passage-slices k to k + l as a subgraph of the minimal

CEG obtained by unrolling the same CT-DCEG from passage-slices 1 to k + l. A CT-DCEG

unrolled from the first passage-slice is necessarily a CEG as described above. We would

then expect the subgraph of the graph of a CEG to also represent a CEG or decompose into

multiple CEGs.
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(a)

(b)

(c)

Figure 5.11: (a) A CT-DCEG; (b) graph of CT-DCEG unrolled from passage-slices k to
k + 1; (c) minimal representation of this graph.
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Finally note that we can also unroll just a single passage-slice. The graph of a CT-

DCEG unrolled at passage-slice P(k) is not isomorphic to the graph of P(k) itself as the

former also contains the cyclic edges emanating from the leaves of P(k).

5.6 Probability Propagation in CT-DCEGs

We now consider probability propagation through a CT-DCEG. Recall that a review of the

CEG propagation algorithm which does not consider holding times on the transitions was

presented in Section 3.3. This propagation algorithm can be used to propagate intrinsic

evidence E through a CEG whenever the conditional holding times are non-discriminatory

(see Section 5.1) or we do not have any temporal evidence. In this section, we explore

how observations of the unconditional holding times at the vertices of a CEG may lead

to dependence between the conditional holding time distributions and the transition prob-

ability distribution at that vertex. This happens precisely when the unconditional holding

time distributions on the edges emanating from a given vertex are not equivalent. In other

words, if all the edges emanating from a given vertex have the same conditional holding

time distribution, any observation relating to the unconditional holding time at that vertex

does not offer any discriminatory information about the transition probability distribution

at that vertex. In such cases, the vanilla CEG propagation from Section 3.3 may be used.

We shall see in this section how we can extend this propagation algorithm to propagate

temporal observations of unconditional holding time distributions when they possess such

discriminatory power.

Recall that evidence E for a CT-DCEG refers to the set of observation of edges or

vertices traversed or occupied by an individual in the CT-DCEG. We shall consider only

evidence that are positive and are point observations. Further, recall from Section 3.3 that

we also allow negative evidence which can be framed as uncertain positive evidence, and

we assume that the probabilities associated with the elements in a given set of uncertain

positive evidence are equal.

Additionally, a CT-DCEG captures the temporal dynamics of the process being

modelled and hence we might observe temporal evidence. Let elements of the temporal

evidence T be holding times for vertices in the CT-DCEG. As with the evidence, we shall

only consider temporal evidence such that its elements are positive (certain or uncertain as

described in Section 3.3) and are point observations. We do not consider here temporal

observations of the kind where we observe that an individual was at a certain vertex for

a given time interval. However, note that such interval temporal observations are of great

interest in continuous time models and we discuss this further in Section 5.8.

Example 5.23 (Infection example continued). Observing that an individual or a group of
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individuals had a holding time of t days in one of w6 or w7 is an instance of uncertain

positive temporal evidence. Again, we assume here that this evidence could be for w6 or w7

with equal probability. That is, we do not have any information to say that the individual

was more likely to have received treatment 1 or treatment 2.

Crucially, we require that the temporal evidence T is compatible with the evidence

in E . For instance, the evidence E and temporal evidence T would be incompatible if a

vertex v in E makes all paths passing through another vertex v′ impossible and T contains

the unconditional holding time at vertex v′. Further, assume that information contained

in T through the transition times about specific edges traversed or vertices visited is also

contained in E .

As discussed earlier for CEGs and BNs, not all kinds of evidence can be propagated.

The ones which cannot be propagated are precisely those that destroy the conditional inde-

pendence structures on which such propagation algorithms rely for performing their local

message-passing updates (see Section 3.3). Hence, we still require that the evidence E is

intrinsic as defined in Section 3.3. However, no additional constraints are needed for the

temporal evidence T .

Before presenting an extension of the vanilla CEG propagation algorithm such that

it incorporates temporal evidence, we first present a novel dynamic propagation scheme to

simplify the process of propagation through a dynamic CEG variant.

5.6.1 A Dynamic Propagation Scheme

While in theory dynamic variants of CEGs are modelled on an infinite tree and hence can

be thought to continue indefinitely, in practice the availability of data and the feasibility of

analysis typically restrict us to a fixed number of passage-slices. Hence, although theoreti-

cally we can unroll a CT-DCEG into an infinitely large CEG, for most practical purposes it

is sufficient to concentrate on a window of a finite number of passage-slices, say from k to

k + l represented by the unrolled CEG CP(k:k+l), for k, l ∈ N. In fact, DBNs also rely on such

unrolling for inference and the basic idea of our propagation scheme is analogous to the

scheme presented in Kjærulff (1992) for DBNs which employs standard junction tree infer-

ence by unrolling the DBN and splitting it into past, current and future models. CTBNs,

on the other hand, model each variable as a continuous time Markov process. Inference

in CTBNs directly exploits these continuous time Markov processes and typically does not

involve any unrolling (see e.g. Nodelman et al. (2002) and Saria et al. (2007)).

We now consider how we can simplify our inferential exercise for a CT-DCEG

by splitting the problem into past, current and future models based on the passage-slices

corresponding to the intrinsic evidence E and temporal evidence T . For a given CT-DCEG

112



D with known conditional transition probabilities and holding time distributions, suppose

that the intrinsic evidence E and temporal evidence T pertain to vertices contained in

passage-slices k to k + l, for k, l ∈ N. We can then unroll the CT-DCEG and split it into

three models as follows:

• The past model is given by the CEG CP(1:k−1) of the unrolled CT-DCEG.

• The current model is given by the CEG or the collection of CEGs associated with the

graph of the CT-DCEG unrolled from passage-slices k to k + l.

• The future model is given by an updated CT-DCEGD∗ as described in Section 5.6.4.

The main inferential task lies in propagating the intrinsic evidence E and temporal

evidence T through the current model. However, new evidence observed for the current

model is likely to significantly affect the conditional transition probabilities in the past and

future models as well. Propagating the new evidence through vertices that precede the

vertices for which evidence has been observed is often referred to as backward smoothing.

The inference concerning vertices which succeed the vertices for which evidence has been

observed is known as forecasting. For this reason, the past model may also be referred to as

the backward smoothing model and the future model as the forecasting model. However, as

stated in Kjærulff (1992), these terms are slightly imprecise as the current model most likely

also contains vertices for which we perform backward smoothing and/or forecasting. We

first address propagation through the current model before discussing propagation through

the past and future models.

5.6.2 Propagation Through the Current Model

Consider a CT-DCEG D with known conditional transition probabilities and holding time

distributions. Let E denote the intrinsic evidence and T the temporal evidence which

pertain to events contained within the passage-slices from k to k + l, for k, l ∈ N. For

simplicity, we shall assume here that the graph of this CT-DCEG unrolled from passage-

slices k to k + l represents the graph of a single CEG. Denote this CEG by CP(k:k+l). This

unrolled CEG is our current model. If the graph instead decomposes into a collection of

CEGs, we would need to propagate E and T as described below through each of the CEGs.

Intrinsic evidence E enables us to reduce the possible root-to-sink walks that one

could traverse in CP(k:k+l) conditioned on E to Λ(E ). Denote the probability of occupy-

ing a vertex w ∈ V(CP(k:k+l)) by p(w) = p(Λ(w)) and the probability of traversing an

edge (w,w′, l) ∈ E(CP(k:k+l)) by p(w,w′, l) = p(Λ(w,w′, l) |Λ(w)). Further, denote by

pt(w,w′, l) = p(H(w,w′, l) = t |Λ(w,w′, l),Λ(w)) the probability of staying at position w

for time t before transitioning along edge (w,w′, l).
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If we have no temporal evidence, i.e. T = ∅ then propagation through the CEG

of the current model proceeds as in the vanilla CEG propagation described in Section 3.3.

Observe that the parameters of the conditional holding time distributions do not get revised

by any (temporal) evidence. Hence, our focus is on updating the conditional transition

probabilities in CP(k:k+l) in light of intrinsic evidence E and the temporal evidence T . The

latter is necessitated for the reasons outlined earlier. We consider two cases here: 1) when

we have temporal evidence of holding time for at least one vertex in CP(k:k+l); 2) when we

have temporal information of the kind where we know the total holding time from some

vertex w to some other vertex w′ in CP(k:k+l).

Case 1

Consider the minimal E -reduced graph of CP(k:k+l) (see Section 3.3 for definition of an E -

reduced graph). To start with, we suppose that we have holding times for all transitions

from the root of CP(k:k+l) up to its sink. Clearly, in this case, if we have n holding times,

then any root-to-sink walk in CP(k:k+l) with fewer or more than n edges will have associated

probability zero. This is an indirect form of negative evidence implied through the positive

temporal evidence in T . In order for E and T to be consistent with each other, we re-

quire that the intrinsic evidence E will include this information in the form of certain and

uncertain positive evidence such that none of the root-to-sink walks in CP(k:k+l) with fewer

or more than n edges are part of its E -reduced graph, CE
P(k:k+l).

Like the vanilla CEG propagation algorithm, the propagation algorithm for the cur-

rent model has two main steps: a backward step to calculate potentials and emphases for

the conditional transition and conditional holding time distributions, and a forward step

which updates the conditional transition probabilities. Note that p(.) refers to probabilities

in CP(k:k+l) and p̂(.) to the updated probabilities in CE
P(k:k+l).

Denote by E(w) all the edges emanating from vertex w ∈ V(CP(k:k+l)). Let V(−1) =

{w ∈ V(CP(k:k+l)) | ∀(w,w′, ·) ∈ E(w),w′ = w∞}, i.e. V(−1) contains vertices all of whose

outgoing edges terminate in w∞ in CP(k:k+l). The algorithm proceeds as follows.

1. For each edge e = (w,w∞, l) ∈ E(w) for w ∈ V(−1), if (w,w∞, l) ∈ E(CE
P(k:k+l)) set the

t-potential (conditional transition potential) τe(w∞ |w) and h-potential (conditional

holding time potential) τtw
e (w∞ |w) as

τe(w∞ |w) = p(w,w∞, l),

τtw
e (w∞ |w) = ptw(w,w∞, l),

where tw denotes the holding time at w. If (w,w∞, l) < E(CE
P(k:k+l)), set both potentials
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as zero. Now set the t-emphasis Φ(w) and h-emphasis Φtw(w) as follows

Φ(w) =
∑

e∈E(w) τe(w∞ |w),

Φtw(w) =
∑

e∈E(w) τe(w∞ |w) τtw
e (w∞ |w).

We now say that the sink w∞ and all the positions in V(−1) are accommodated.

2. For an edge e = (w,w′, l) ∈ E(w) for w ∈ V(CP(k:k+l)) such that all of w’s children are

accommodated, set the t-potential and h-potential as

τe(w′ |w) = p(w,w′, l) Φ(w′),

τtw
e (w′ |w) = ptw(w,w′, l),

if (w,w′, l) ∈ E(CE
P(k:k+l)) and zero otherwise. Set the emphases as

Φ(w) =
∑

e∈E(w) τe(w′ |w),

Φtw(w) =
∑

e∈E(w) τe(w′ |w) τtw
e (w′ |w).

Position w is said to be accommodated when the potentials and emphases are calcu-

lated for all e ∈ E(w).

3. For all w ∈ V(CP(k:k+l)) and for edge e = (w,w′, l) ∈ E(w), the updated conditional

transition probabilities are given by

p̂(e) =


τe(w′ |w) τtw

e (w′ |w)
Φtw(w)

, if e ∈ E(CE
P(k:k+l))

0, if e < E(CE
P(k:k+l)).

The edges of CE
P(k:k+l) are populated with the non-zero conditional transition probabil-

ities p̂(.) and their associated holding time distributions are inherited from CP(k:k+l).

As we worked with the CEG of the unrolled CT-DCEG graph, our algorithm above

is essentially a propagation algorithm for CEGs with arbitrary holding time distributions

on its edges. Observe further that we do assume in our algorithm that the conditional

holding time distributions are continuous. Hence, this algorithm is equally applicable to the

case where our process evolves in discrete time and where we have explicit modelling of

conditional holding times. We prove the results in our algorithm below.

Theorem 5.24. For a CT-DCEG D, intrinsic evidence E and temporal evidence T , sup-

pose that its current model is given by a single CEG CP(k:k+l), for k, l ∈ N. Suppose that T

which contains holding times of all transitions for the realised, but partially unobserved,
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root-to-sink walk in CP(k:k+l). Let the E -reduced graph of CP(k:k+l) be denoted by CE
P(k:k+l).

The conditional transition probabilities in CE
P(k:k+l) are obtained as below:

p̂(e) =


τe(w′ |w) τtw

e (w′ |w)
Φtw(w)

, if e ∈ E(CE
P(k:k+l))

0, if e < E(CE
P(k:k+l))

where w ∈ V(CP(k:k+l)) and edge e = (w,w′, l) ∈ E(w). The potentials and emphases are as

defined in the algorithm above.

Proof. The updated transition probability for edge (w,w′, l) given the intrinsic evidence E

and the possible unconditional holding time at vertex w given in the temporal evidence T ,

denoted here by tw, can be written as

p̂(w,w′, l) = p(Λ(w,w′, l) |E ,H(w) = tw,Λ(w))

=
p(Λ(w,w′, l),E ,H(w) = tw,Λ(w))

p(E ,H(w) = tw,Λ(w))
(5.16)

Note that tw is the possible unconditional holding time at vertex w as T gives the holding

times at the various transitions. Vertices which are i edges away from the root of CE
P(k:k+l)

might all correspond with the holding time associated with ith transition in T .

LetT denote the event tree underlying the unrolled CEG CP(k:k+l) andT ∗ – a subtree

of T – denote the event tree underlying CE
P(k:k+l). Recall that a position set contains a set

of vertices in the event tree and that each position set has a single representative vertex in

the CEG. So a vertex w ∈ V(CP(k:k+l)) represents a set of vertices denoted by V(w) in the

underlying event tree T . Further, we can partition V(w) into two sets VI(w) and VJ(w) such

that vertices in VI(w) appear in the event tree T ∗ while vertices VJ(w) do not. For each edge

(w,w′, l) in CP(k:k+l), there exists an edge (v, v′, l) in T for every v ∈ V(w). Hence, we can

write Λ(w) and Λ(w,w′, l) in CP(k:k+l) as

Λ(w) = ∪v∈V(w)Λ(v),

Λ(w,w′, l) = ∪v∈V(w)Λ(v, v′, l).

Further, we have that for edge (v, v′, l) ∈ E(T ) where v ∈ V(w) and v′ ∈ V(w′),

p(v, v′, l) = p(w,w′, l),

ptv(v, v′, l) = ptw(w,w′, l),
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where tv = tw. We can rewrite Equation 5.16 as

p̂(w,w′, l) =
p(E ,∪v∈V(w){Λ(v, v′, l),H(v) = tv,Λ(v)})

p(E ,∪v∈V(w){H(v) = tv,Λ(v)})
, (5.17)

to be evaluated on the tree T . There is no directed path from vi and v j for vi, v j ∈ V(w), i , j

as their subtrees are isomorphic in T . Hence we have that Λ(vi)∩Λ(v j) = ∅ and Λ(vi, v′i , l)∩

Λ(v j, v′j, l) = ∅. So we can write Equation 5.17 as

p̂(w,w′, l) =

∑
v∈V(w) p(E ,Λ(v, v′, l),H(v) = tv,Λ(v))∑

v∈V(w) p(E ,H(v) = tv,Λ(v))
. (5.18)

For v ∈ VJ(w) we have that T ∗Λ ∩ Λ(v) = ∅. Also, since the vertices in the same

position are exchangeable, we can write Equation 5.18 as

p̂(w,w′, l) =

∑
v∈VI (w) p(E ,Λ(v, v′, l),H(v) = tv,Λ(v))∑

v∈VI (w) p(E ,H(v) = tv,Λ(v))

=
p(H(vi) = tvi |E ,Λ(vi, v′i , l),Λ(vi))

p(E ,H(vi) = tvi |Λ(vi))
×

p(E ,Λ(vi, v′i , l) |Λ(vi))
∑

v∈VI (w) p(Λ(v))∑
v∈VI (w) p(Λ(v))

=
p(H(vi) = tvi |E ,Λ(vi, v′i , l),Λ(vi))

p(E ,H(vi) = tvi |Λ(vi))
× p(E ,Λ(vi, v′i , l) |Λ(vi)) (5.19)

for any vi ∈ VI(w).

The proofs for Φ(w) = p(E |Λ(v)) and τe(w′ |w) = p(E ,Λ(v, v′, l)) |Λ(v)) where

e = (w,w′, l) ∈ CE
P(k:k+l) and v ∈ VI(w), follow exactly as given in Thwaites et al. (2008).

We present these below for completeness.

Proof for Φ(w) = p(E |Λ(v)) by induction
Base case: Consider the vertices w ∈ W(−1). We have for any v ∈ VI(w)

Φ(w) =
∑

e∈E(w)

τe(w∞|w)

=
∑

e∈E(w)

p(w,w∞, l)

=
∑

e∈E(v)

p(v, vleaf, l)

= p(E |Λ(v)).

Generalisation: Next, we consider any vertex w ∈ V(CP(k:k+l)) such that all the vertices {w′}

into which edges from w (i.e. edges in E(w)) terminate have Φ(w′) = p(E |Λ(v′)) for any
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v′ ∈ VI(w′). Then we have for any v ∈ VI(w)

Φ(w) =
∑

e∈E(w)

τe(w′|w)

=
∑

e∈E(w)

p(w,w′, l) Φ(w′)

=
∑

e∈E(v)

p(v, v′, l) p(E |Λ(v′))

=
∑

e∈E(v)

p(Λ(v, v′, l) |Λ(v)) p(E |Λ(v′)).

However, in an event tree, we have that Λ(v′) = Λ(v, v′, l) ⊂ Λ(v). So we can write Φ(w) as

Φ(w) =
∑

e∈E(v)

p(Λ(v, v′, l),Λ(v′) |Λ(v)) p(E |Λ(v′),Λ(v, v′, l),Λ(v))

=
∑

e∈E(v)

p(E ,Λ(v′),Λ(v, v′, l) |Λ(v))

=
∑

e∈E(v)

p(E ,Λ(v, v′, l) |Λ(v))

= p(E ,Λ(v) |Λ(v))

= p(E |Λ(v)).

Proof for τe(w′ |w) = p(E ,Λ(v, v′, l) |Λ(v))

For any v ∈ VI(w) and edge e = (w,w′, l) ∈ E(w), we have that

τe(w′ |w) = p(w,w′, l) Φ(w′)

= p(v, v′, l) p(E |Λ(v′))

= p(Λ(v, v′, l) |Λ(v)) p(E |Λ(v′)).

Now using the same reasoning as for the generalisation step in the previous proof,

τe(w′ |w) = p(E ,Λ(v, v′, l) |Λ(v)).

We now present the proofs for Φtw(w) = p(E ,H(v) = tv |Λ(v)) and τtw
e (w′|w) =

p(H(v) = tv|E ,Λ(v, v′, l),Λ(v)) where e = (w,w′, l) ∈ CE
P(k:k+l) and any v ∈ VI(w).

Proof for Φtw(w) = p(E ,H(v) = tv |Λ(v)) by induction
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Base case: Consider the vertices w ∈ W(−1). We have for any v ∈ VI(w) and tv = tw,

Φtw(w) =
∑

e∈E(w)

τe(w∞|w) τtw
e (w∞|w)

=
∑

e∈E(w)

p(w,w∞, l) ptw(w,w∞, l)

=
∑

e∈E(v)

p(v, vleaf, l) ptv(v, vleaf, l)

=
∑

e∈E(v)

p(Λ(v, vleaf, l) |Λ(v)) p(H(v, vleaf, l) = tv |Λ(v, vleaf, l),Λ(v))

=
∑

e∈E(v)

p(H(v, vleaf, l) = tv,Λ(v, vleaf, l) |Λ(v)).

However, we have that p(H(v, vleaf, l) = tv,Λ(v, vleaf, l)|Λ(v)) = p(H(v) = tv,Λ(v, vleaf, l)|Λ(v))

as the holding time distributions depend on the edge traversed. So we can write Φtw(w) as

Φtw(w) =
∑

e∈E(v)

p(H(v) = tv,Λ(v, vleaf, l) |Λ(v))

= p(H(v) = tv |Λ(v))
∑

e∈E(v)

p(Λ(v, vleaf, l) |Λ(v),H(v) = tv)

= p(H(v) = tv |Λ(v)) p(E ,Λ(v) |Λ(v),H(v) = tv)

= p(E ,H(v) = tv |Λ(v)).

Generalisation: Now consider any vertex w ∈ V(CP(k:k+l)) such that all the vertices {w′} into

which edges from w (i.e. edges in E(w)) terminate have Φtw′ (w′) = p(E ,H(v′) = tv′ |Λ(v′))

for some v′ ∈ VI(w′). Then we have for any v ∈ VI(w) and tv = tw,

Φtw(w) =
∑

e∈E(w)

τe(w′|w) τtw
e (w′|w)

=
∑

e∈E(w)

p(w,w′, l) Φ(w′) ptw(w,w′, l)

=
∑

e∈E(v)

p(v, v′, l) p(E |Λ(v′)) ptv(v, v′, l).
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Again, recall that Λ(v′) = Λ(v, v′, l) ⊂ Λ(v). So we can write Φtw(w) as

Φtw(w) =
∑

e∈E(v)

p(Λ(v, v′, l),Λ(v′) |Λ(v)) p(E |Λ(v′),Λ(v, v′, l),Λ(v)) ptv(v, v′, l)

=
∑

e∈E(v)

p(E ,Λ(v′),Λ(v, v′, l) |Λ(v)) ptv(v, v′, l)

=
∑

e∈E(v)

p(E ,Λ(v, v′, l) |Λ(v)) ptv(v, v′, l)

=
∑

e∈E(v)

p(E ,Λ(v, v′, l) |Λ(v)) p(H(v, v′, l) = tv |Λ(v, v′, l),Λ(v)).

Recall that the holding time density is invariant given intrinsic evidence E . So we can write

Φtw(w) as

Φtw(w) =
∑

e∈E(v)

p(E ,Λ(v, v′, l) |Λ(v)) p(H(v, v′, l) = tv |E ,Λ(v, v′, l),Λ(v))

=
∑

e∈E(v)

p(E ,H(v, v′, l) = tv,Λ(v, v′, l) |Λ(v))

=
∑

e∈E(v)

p(E ,H(v) = tv,Λ(v, v′, l) |Λ(v))

= p(H(v) = tv |Λ(v))
∑

e∈E(v)

p(E ,Λ(v, v′, l) |Λ(v),H(v) = tv)

= p(H(v) = tv |Λ(v)) p(E ,Λ(v) |Λ(v),H(v) = tv)

= p(E ,H(v) = tv |Λ(v)).

Proof for τtw
e (w′|w) = p(H(v) = tv|E ,Λ(v, v′, l),Λ(v))

For edge e = (w,w′, l) ∈ E(w), any v ∈ VI(w) and tv = tw we have by definition of τtw
e (w′ |w)

and by the invariance of the holding time density given intrinsic evidence E that

τtw
e (w′ |w) = ptw(w′ |w)

= p(H(v) = tv |Λ(v, v′, l),Λ(v))

= p(H(v) = tv |E ,Λ(v, v′, l),Λ(v)),

Finally, combining these results for edge e = (w,w′, l) ∈ E(w), any v ∈ VI(w) and

tv = tw enables us to express Equation 5.19 as

p̂(w,w′, l) =
p(H(v) = tv |E ,Λ(v, v′, l),Λ(v)) p(E ,Λ(v, v′, l) |Λ(v))

p(E ,H(v) = tv |Λ(v))

=
τtw

e (w′ |w) τe(w′ |w)
Φtw(w)

.
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This completes the proof. �

The pseudo-code for the above algorithm is given in Algorithm 4. In the algorithm,

V−1(wi) denotes the vertices that have edges terminating in vertex wi and E−1(wi) denotes

the edges terminating in wi in the CEG CP(k:k+l). The possible holding time at vertex wi is

denoted by ti.

Algorithm 4: Current model propagation algorithm
Input : Conditional transition probabilities, holding time distributions and

the E -reduced graph for the current model CP(k:k+l), intrinsic
evidence E and temporal evidence T with holding times for each
transition in the realised root-to-sink walk.

Output: Updated conditional transition probabilities.
1 Denote by CE

P(k:k+l) the E -reduced graph of CP(k:k+l).
2 Set A← ∅, B← {w∞}, Φ(w∞)← 1.
3 while B , {w0} (the root vertex) do
4 for w j ∈ B do
5 for wi ∈ V−1(w j) do
6 for e ∈ E(wi) ∩ E−1(w j) do
7 if e ∈ Λ(E ) then
8 τe ← p(e) · Φ(w j), τ

ti
e ← pti(e)

9 else
10 τe ← 0, τti

e ← 0
11 A← A ∪ {e}
12 if E(wi) ⊆ A then
13 Φ(wi) =

∑
e∈E(wi) τe

14 Φti(wi) =
∑

e∈E(wi) τe · τ
ti
e

15 B← B ∪ {wi}

16 B← B\{w j}

17 for wi ∈ V(CP(k:k+l)) do
18 for e ∈ E(wi) ∩ Λ(E ) do

19 p̂(e) =
τe · τ

ti
e

Φti(wi)
20 for e ∈ E(wi)\Λ(E ) do
21 p̂(e) = 0
22 return Updated conditional transition probabilities p̂(.)

If we observe the holding times only up to some vertex w , w∞ in CP(k:k+l), we can

still use the above algorithm by setting the h-potential for edges e = (w′,w′′, l) ∈ E(CE
P(k:k+l))

such that w ≺ w′ as one. This is equivalent to integrating over the unknown holding time tw
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whenever the holding time at some vertex w is not observed. That is, for any v ∈ VI(w),

τtw
e (w′|w) =

∫
t
τt

e(w′|w) dt

=

∫
t

p(H(v) = t |E ,Λ(v, v′, l),Λ(v)) dt

= 1 (5.20)

and also, for the h-emphasis, we have

Φtw(w) =

∫
t
Φt(w) dt

=

∫
t

p(E ,H(v) = t |Λ(v)) dt

= p(E |Λ(v))
∫

t
p(H(v) = t |E ,Λ(v)) dt

= p(E |Λ(v))

= Φ(w). (5.21)

Thus in this case, the backward propagation exercise until the edges emanating from vertex

w are reached, is identical to that in a vanilla CEG. We can further generalise this to set

the h-potential to one as above for all vertices where we do not observe a holding time

even when they precede vertices for which we observe holding times. In this way, we

can also propagate evidence through the vertices representing time-invariant covariates in a

CT-DCEG.

Case 2

We now consider the second case where we know the total holding time tw,w′ starting from

some vertex w until another vertex w′ is reached where w ≺ w′ and w,w′ ∈ CP(k:k+l). Note

that all w-to-w′ walks in CE
P(k:k+l) are not necessarily of the same length. Denote the set of

these walks by Λ(w,w′). We now estimate the probability of each walk in Λ(w,w′) given

the total time taken for the transition between the two.

We first construct the E -reduced graph CE
P(k:k+l) and perform the vanilla CEG prop-

agation with only the intrinsic evidence E as described in Section 3.3. Denote the updated

conditional transition probabilities by p̂(.). For each walk in λi ∈ Λ(w,w′), let the random

variable H(λi(w,w′)) indicate the time it takes to get from vertex w to w′ when the indi-

vidual traverses the edges given in the walk λi. Then H(λi(w,w′)) is a convolution of the

holding time densities on the edges in the walk λi. Since we observe a total holding time for

the transition from vertex w to w′, at least one of the edges along each λi must have a hold-
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ing time distribution. In other words, they cannot all emanate from vertices representing

time-invariant covariates. Edges along λi that do emanate from vertices representing time-

invariant covariates do not contribute to H(λi(w,w′)). The probability that the individual

travelled to vertex w′ from vertex w along the edges in the walk λi given the total transition

time of tw,w′ can be calculated as

p̂(λi |H(λi(w,w′)) = tw,w′ ,E ) =
p(H(λi(w,w′)) = tw,w′ | λi,E ) p̂(λi,E )∑

λk∈Λ(w,w′) p(H(λk(w,w′)) = tw,w′ | λk,E ) p̂(λk,E )

where p̂(λi,E ) is given as

p̂(λi,E ) =
∏

e∈λi p̂(e).

This type of inference might be suitable for several domains – most notably medicine

(e.g. time between two related sets of symptoms to identify what might be the underlying

process causing the symptoms) and law/forensic science (e.g. time between two CCTV

footages capturing the suspect to infer what the suspect might have done in the time be-

tween the two recordings).

Note here that if the convolution of conditional holding time distributions along

each walk λi ∈ Λ(w,w′) are not equivalent, then a dependence between the convolutions of

conditional holding time distributions and the distribution of transition probabilities along

each λi will be induced on observing the holding time from w to w′. Within a non-stratified

setting, this may occur even if the conditional holding time distributions for the edges em-

anating from any given vertex are always equivalent.

Finally, following on the discussion in Section 3.3 we note here that when the condi-

tional transition and holding time distributions are estimated, we can substitute the known

conditional transition probabilities with the posterior means of the estimated conditional

transition distributions, and the known conditional holding time distributions with the pos-

terior conditional holding time distributions. For instance, consider a conditional holding

time distribution H(e) that follows a Weibull distribution with known shape parameter κ

and unknown scale parameter π. Suppose that the scale parameter π has a posterior Inverse-

Gamma distribution with shape hyperparameter β and scale hyperparameter γ. Then the

probability that the observed holding time of variable H(e) is t can be obtained as follows

p(H(e) = t) =

∫
π

p(t | π, κ) p(π | β, γ) dπ

=

∫
π

{
κ

π
(t)κ−1 exp

(
−tκ

π

)}{
γβ

Γ(β)
(π)−β−1 exp

(
−γ

π

)}
dπ

=
κ(γ)β(t)κ−1β

(γ + tκ)β+1 . (5.22)

123



5.6.3 Backward Smoothing

In this section, we discuss backward smoothing. Recall that backward smoothing refers

to propagation of information through vertices that precede vertices for which evidence is

observed. The current model CP(k:k+l) might contain vertices for which we need to per-

form backward smoothing and thus, backward smoothing is not restricted to the past model

CP(1:k−1). In fact, when the current model contains such vertices, backward smoothing is an

implicit part of the propagation algorithm.

Observe that the temporal evidence does not affect the past passage-slices as we do

not have any information about the holding times at any vertices in the past passage-slices.

While intrinsic evidence might affect the vertices and edges in the past model, this effect

need not be propagated through the past model unless we need to update the conditional

transition probability distributions or make inferences about the vertices within the past

passage-slices. Below we describe how this can be done.

Suppose that our inference query concerns vertices from passage-slices P(k − j)

to P(k − 1) (for j ∈ N, j < k) conditional on intrinsic evidence E and temporal evi-

dence T which concern vertices from passage-slices P(k) to P(k + l). Denote the CEG

of the CT-DCEG unrolled from passage-slices P(k − j) to P(k − 1) by CP(k− j:k−1). Since T

does not affect vertices in CP(k− j:k−1), we only need to propagate the intrinsic evidence E

through CP(k− j:k−1). For this we need the E -reduced graph of CP(k− j:k−1). However, vertices

and edges in E do not appear in CP(k− j:k−1). Instead, we obtain the E -reduced graph of

CP(k− j:k−1) by deleting the vertices and edges in CP(k− j:k−1) that do no appear on any root-

to-sink paths which would connect to CP(k:k+l) if the CT-DCEG were to be unrolled from

passage-slices P(k − j) to P(k + l). In simpler words, we delete any vertices and edges in

the graph of CP(k− j:k−1) which have zero probability of being visited and traversed when we

condition on the intrinsic evidence E . Denote this graph by CE
P(k− j:k−1). The propagation

exercise is now reduced to the vanilla CEG propagation algorithm given in Section 3.3.

5.6.4 Forecasting

Similar to backward smoothing, the temporal evidence does not affect the future passage-

slices for the reasons presented in Section 5.6.3. To obtain the future model, we update the

graph of the CT-DCEG D such that we remove any vertices and edges which have zero

probability of being visited and traversed in all future passage-slices P(i) for i > k + l con-

ditioned on intrinsic evidence E . The transition probabilities and holding time distributions

on the remaining vertices and edges remain unchanged. Denote this updated CT-DCEG

model byD∗. We can now use the CT-DCEGD∗ or its (possibly approximate) SMP repre-

sentation as described in Section 5.4 for inference queries relating to future passage-slices.
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(a)

(b)

(c)

Figure 5.12: E -reduced graphs (a) of current model, (b) past model, and (c) future model
for propagating E and T as described in Example 5.25.
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Example 5.25 (Infection example continued). Suppose we observe that an individual has

been infected by the virus for a second time. Further we observe that they received treat-

ment and recovered. Since the evidence relates to the second passage-slice only, our cur-

rent model is the CT-DCEG of the infection process unrolled at the second passage-slice.

This evidence can be written as E = ({w6,w7}, {(w6,w∞, recovered), (w7,w∞, recovered)})

where elements within brackets {·} represent a set of uncertain evidence. The E -reduced

graph of the current model, denoted here by CE
P(2) is given in Figure 5.12(a). Since the

set of root-to-sink paths implied by E in the current model is equivalent to the root-to-sink

paths in its E -reduced graph, the evidence E is intrinsic. These root-to-sink paths are given

below:

λ1 = ((w1,w3, strain 1), (w3,w6, treatment 1), (w6,w∞, recovered));

λ2 = ((w1,w3, strain 1), (w3,w7, treatment 2), (w7,w∞, recovered));

λ3 = ((w1,w3, strain 2), (w3,w6, treatment 1), (w6,w∞, recovered));

λ4 = ((w1,w3, strain 2), (w3,w7, treatment 2), (w7,w∞, recovered)).

Assume that the means of the posterior Dirichlet distributions on the conditional

transition parameters in the CT-DCEG for the vertices in CE
P(2) are as described in Table

5.1, and that the Weibull shape parameter and the hyperparameters of the Inverse-Gamma

distribution on the Weibull scale parameter for the conditional holding times in the CT-

DCEG for the edges in CE
P(2) are as given in Table 5.2.

Vertex Mean posterior transition probabilities Corresponding edge labels
w1 (0.25, 0.5, 0.25) (strain 1, strain 2, strain 3)
w3 (0.4, 0.6) (treatment 1, treatment 2)
w6 (0.85, 0.15) (recovered, hospitalisation)
w7 (0.75, 0.15) (recovered, hospitalisation)

Table 5.1: The mean posterior transition probabilities and the corresponding edge labels in
the CT-DCEG for the vertices in CE

P(2).

The associated temporal evidence T gives us the holding times for the three tran-

sitions in the realised but partially unobserved root-to-sink path of CE
P(2) as t1 = 35, t2 = 1

and t3 = 13, all in days. By propagating E and T through CE
P(2) enables us to revise our

beliefs of which path the individual might have traversed during their second bout of the

infection. Figure 5.13(a) shows the potentials and emphases for the backward step of our

propagation algorithm, and Figure 5.13(b) gives the updated transition probabilities for

CE
P(2) conditioned on E and T .
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Edge Shape parameter Posterior distribution for scale
(w1,w3, strain 1) 1 IG(350, 14500)
(w1,w3, strain 2) 1 IG(720, 42500)

(w3,w6, treatment 1) 1 IG(425, 520)
(w3,w7, treatment 2) 1 IG(645, 892)
(w6,w∞, recovered) 2 IG(362, 108865)
(w7,w∞, recovered) 2 IG(483, 68650)

Table 5.2: The Weibull shape parameter and the posterior Inverse-Gamma distribution for
the Weibull scale parameter in the CT-DCEG corresponding to the edges in CE

P(2).

(a)

(b)

Figure 5.13: (a) Calculation of the potentials and emphases in the backward step of our
propagation algorithm; (b) The updated current model with the revised transition probabil-
ities obtained through the forward step of our propagation algorithm.
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The probability p̂(λi) that the individual went along the root-to-sink path λi, for

i = 1, 2, 3, 4 is given in Table 5.3. For comparison, we show the path probabilities in

the unrolled CEG CP(2) of the second passage-slice before propagating the intrinsic and

temporal evidence (p(λi)) as well as what the path probabilities would have been if we

had not corrected them for the temporal evidence and had only used the intrinsic evidence

(p∗(λi)). Note that the probabilities p(λi) for the paths before any intrinsic or temporal

evidence has been propagated do not add up to 1.

Path λi p(λi) p∗(λi) p̂(λi)
λ1 0.085 0.142 0.1612
λ2 0.1125 0.188 0.2076
λ3 0.17 0.2884 0.2760
λ4 0.225 0.3816 0.3552

Table 5.3: Path probabilities for path λi (i = 1, 2, 3, 4) in the current model: p(λi) before
propagating the intrinsic and temporal evidence; p∗(λi) after propagating intrinsic evidence;
p̂(λi) after propagating both the intrinsic and temporal evidence.

One of the most important features of propagation in a CT-DCEG (like in a CEG) is

that evidence typically leads to simplification of the graph through which we need to prop-

agate the evidence. Further, the above example clearly shows how knowing the holding

times conveys essential information about the evolution of the process. Our propagation

algorithm conveniently propagates this added information through a straightforward exten-

sion of the propagation algorithm of Thwaites et al. (2008). Of course, the discriminatory

power of the temporal information is dependent on how different the competing holding

time distributions are.

5.7 Application of the Dynamic Falls Intervention

We now revisit the falls intervention described in Chapter 4. We extend this intervention to

a dynamic setting where we consider the effects of the intervention on those who have been

assessed in the community and in communal establishments. We shall group together high

risk individuals who are treated with and without being referred. We shall also assume here

that low risk individuals do not receive any treatments under the longitudinal intervention.

Further, we assume that for high risk individuals who suffer a fall there are three

possible outcomes: 1) serious complications or death resulting from the fall due to which

they leave our population under consideration, 2) no serious consequences and can resume

normal life, and 3) those living in the community may be moved to a communal establish-

ment for further care and support. For a low risk individual, we consider that a fall triggers
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a reevaluation of their risk status. Figure 5.14 shows the event tree describing the process

for assessed individuals in the community where the three dots following a vertex indicate

that the tree continues on. Vertices s12 and s15 represent that the individual in the com-

munity might fall again while continuing to remain in the community. Hence, the possible

consequences of a potential second fall are the same as earlier: “Return to normal”, “Move

to communal establishment” and “Complications”. Whereas, vertices s13 and s16 represent

a move to a communal establishment. Hence, the possible consequences from here of a

potential second fall are “Return to normal” and “Complications”.

Figure 5.14: Event tree describing the dynamic falls intervention for assessed individuals
in the community.

We simulated data for this longitudinal extension of the falls intervention by cal-

ibrating these to summary statistics provided in various studies, as described in Section

4.5. We test the performance of the model selection algorithm in the special case described

in Section 5.3.3. Hence, we will assume here that the transition probabilities and holding

times remain invariant to the number of times the individual has experienced a fall. This is a

strong assumption and we emphasise here again that this is for simplicity. We discuss more

promising potential model selection algorithms for the CT-DCEG class in Section 5.8.

With the known ground truth, we first analyse the performance of our model selec-

129



tion algorithm on the special case described in Section 5.3.3. Recall that model selection

involves identifying the collection of stages in the underlying tree. However, unlike in a

CEG, stages in a CT-DCEG must satisfy two conditions: one associated with the condi-

tional transition distribution and the other with the conditional holding time distributions.

Since the transition and holding time distributions are mutually independent, we can split

the task of identifying the stages into two sub-tasks: identifying the sets of situations that

satisfy the condition associated with the conditional transition distributions, and identify-

ing the sets of edges that satisfy the condition associated with the conditional holding time

distributions. Call these sets of situations as situation clusters, and the sets of edges as

edge clusters. This, in fact, gives us another way of visualising staged trees and CT-DCEGs

where vertex colours represent situation clusters and edge colours represent edge clusters.

Of course, the set of positions – i.e. the vertex set of the CT-DCEG not including the sink

vertex – would remain unchanged. In cases where most situations satisfy only one of the

conditions of a stage, the added information obtained from the graph of a CT-DCEG from

such an alternative visualisation might prove useful.

Random variable Description
H(e3,6),H(e12,19) Duration from treatment or recovery to fall for community high risk

individuals who are treated.
H(e4,8) Duration from assessment or recovery to fall for community high risk

individuals who are not untreated.
H(e13,21) Duration from treatment, recovery or move from community to fall

for communal high risk individuals who are treated.
H(e5,10) Duration from assessment to fall for community low risk

individuals.
H(e6,12),H(e8,15) Duration from a fall to return to normal.
H(e6,13),H(e8,16) Duration from a fall to moving to a communal establishment.
H(e6,14),H(e8,17) Duration from a fall to leaving the population of interest due

to complications.
H(e10,18) Duration from fall to reassessment for community low risk

individuals.

Table 5.4: H(ei, j) refers to the holding time along edge ei j from situations si to s j in Figure
5.14.

We analyse the data for simulations of sample sizes 500, 1500, 2500, 5000, 7500

and 10000. We simulated 100 instances of each population size. Edges emanating from

vertices representing living arrangement (as community or communal establishment), level

of risk (as high or low) and treatment status (as treated or not treated) are time-invariant and

do not have any explicit holding time distributions. Transitions between states have Multi-

nomial distributions and the conditional holding times, where appropriate, are generated
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from two-parameter Weibull distributions. Table 5.4 describes the conditional holding time

variables for the event tree segment shown in Figure 5.14. Figure 5.15(a) shows the graph

of the data generating CT-DCEG for our longitudinal extension of the falls intervention,

whereas Figure 5.15(b) shows the alternative visualisation described above. In both CT-

DCEG graphs, the edge representing “No fall” emanating from vertices w4,w5,w7,w8,w11

and w12 are hidden to prevent visual cluttering. The edge labels “Loop” and “Move” cor-

respond to “Return to normal” and “Move to communal establishment” respectively. We

can see in Figure 5.15(b) that the alternative visualisation can provide additional informa-

tion that the original visualisation may not be able to show. In this case, we can see from

Figure 5.15(b) that the distribution governing the time it takes from a fall to returning to

normal life or to deteriorating with severe complications are conditionally independent of

the individual’s living arrangement given that they are classified as high risk. In fact, we

can see that the time to returning to normal life given that an individual has fallen follows

the same distribution, irrespective of their living arrangement and whether they received

any treatment. Further, while the probability of falling is conditionally independent of

the individual’s living arrangement given that they are treated, this relationship does not

hold when we condition on the individual not being treated. This is a form of contextual

conditional independence that CEGs, including their dynamic variants, are able to express

directly through their graph topology. Finally, notice that the dynamic falls intervention

has structural zeros as those who are low risk do not get treatment with probability one and

hence, there is no information lost by not representing vertices associated with the treatment

variable for low risk individuals.

For identifying the situation clusters and edge clusters, we use the AHC algorithm

across a wide range of prior specifications. Similar to hyperstages defined in Section 4.4,

hyperclusters can be defined for both the situation clusters and the edge clusters. We analyse

the situation clusters over imaginary sample sizes in the range of 0 to 100 in increases of

0.5, and the edge clusters over pseudo-holding times in the range of 1 to 200 in increases of

1 and for a fixed imaginary sample size of four. Because of the conjugacy properties of this

class the search can be evaluated very quickly. We were able to retrieve the correct number

of situation clusters (11) in most cases, particularly for the larger population sizes (5000

and above) for a wide range of prior specifications, see Figure 5.16(a). The edge clusters,

however, typically returned more clusters (10 or 11) than we had in the generating model

(9), see Figure 5.16(b). On closer inspection, we found that they are almost entirely caused

by the AHC algorithm not being able to correctly identify the edge cluster made up of the

edges representing a complication following a fall for high risk individuals (treated and not

treated). In other words, this edge cluster contains the edges e13,∞, e14,∞, e15,∞ and e16,∞.

The likely cause for this is that in our generating model, “Complications” are the least likely
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(a)

(b)

Figure 5.15: (a) The data generating CT-DCEG for the simulated dynamic falls interven-
tion; (b) an alternative visualisation of the same CT-DCEG.
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outcome for a high risk individual who has fallen. Hence, even in large population sizes,

they have relatively the least number of observations within our dataset. However, we would

still expect these to be correctly identified in larger population sizes. One hypothesis is that

this may be caused by the shape parameter of the generating Weibull distribution being less

than 1. All the other generating Weibull distributions have a shape parameter greater than or

equal to one and were always correctly identified. While this needs further investigation, we

note that this does not appear to be a serious misidentification and the resultant CT-DCEG

obtained by using the AHC algorithm to identify the edge clusters would still be close to

the generating model in terms of its parameters as we shall see below.

The accuracy and stability of the average number of the situation and edge clusters,

across the simulations for varying priors, typically improve as we observe more data. The

AHC algorithm generally becomes more accurate and more discriminating as it receives

more information. However, as with BNs (see e.g. Silander et al. (2007)), while several of

the MAP models found have minor structural differences (in the number and composition of

stages when compared with the generating model), they are similar in terms of the inference

we can draw from them. While several measures could be used for analysing the robustness

of the AHC algorithm, here we demonstrate this by calculating the Kullback-Leibler (KL)

divergence as described below.

Let D be the generating CT-DCEG and D′ be the model found by the AHC algo-

rithm. Let S be the set of situations and E∗ be the set of edges with conditional holding

time distributions in its underlying invariant subtree. The KL divergence for the situation

clusters DKL(S ) is given as follows

DKL(S ) =
∑
si∈S

ki∑
j=1

θi j log
( θi j

E[θ̂i j]

)
(5.23)

where vertex si has ki emanating edges, θi j is the underlying true conditional transition

probability of traversing the jth edge emanating from vertex si and E[θ̂i j] is its correspond-

ing mean posterior probability. Similarly, we define the KL divergence for the Weibull edge

clusters DKL(E∗) as outlined in Bauckhage (2013) and given below

DKL(E∗) =
∑

ei j∈E∗

{
κi j log

(E[π̂i j]
πi j

)
+

( πi j

E[π̂i j]

)κi j

− 1
}

(5.24)

where κi j and πi j are the known shape parameter and unknown scale parameter of the gen-

erating Weibull distribution for edge ei j, and E[π̂i j] is the expectation of the corresponding

Inverse-Gamma distribution for the unknown scale parameter.

From Figures 5.16(c) and 5.16(d), we can see that the probabilistic accuracy of the
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models improves very quickly in response to moderate increases in the population size. The

KL divergence for the situation and edge clusters are relatively higher and more subject to

volatility for the population size of 500. However, for population sizes of 1500 and more,

there is increased stability across prior specifications.

(a) (b)

(c) (d)

Figure 5.16: The average number of situation clusters (a) and the corresponding average
KL divergence (c) for varying values of the imaginary sample size. The average number of
edge clusters (b) and the corresponding average KL divergence (d) for varying values of the
pseudo-holding time and a fixed imaginary sample size equal to four.

In heterogeneous populations, information is often skewed against the smaller vul-

nerable groups. Here, we set the generating model such that there is disparity between the

observations of high risk and low risk individuals. In spite of this, the CT-DCEG framework

performs well for both risk groups. While the CT-DCEG model class used here assumes re-
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current falls to be mutually independent due to our modelling choice for simplicity, experts

might argue that an abnormally large number of falls could be indicative of the individ-

ual suffering from a chronic condition like Parkinsonism. In the CT-DCEG framework it

is easy to embellish the model to incorporate such new hypotheses simply by adding new

well-defined positions. Indeed such embellishments using expert judgements would be en-

couraged through discussion aided by the graphical interface.

5.8 Conclusion

In this chapter we introduced the class of continuous time dynamic CEGs. We vastly ex-

tended the preliminary work on extended DCEGs presented in Barclay et al. (2015), which

turns out to be a special subclass of our more general CT-DCEG class. Further, we demon-

strated a simple case of model selection in this class and proposed a dynamic propagation

scheme for CT-DCEGs inspired by a similar scheme for DBNs put forth by Kjærulff (1992).

This propagation scheme rests on three developments we presented in this chapter. The first

is the development of the necessary semantics to describe the analogue of time-slices for

this continuous time setting which enable us to “unroll” the CT-DCEG. The second is the al-

ternative representation to a CT-DCEG provided by a, possibly approximate, semi-Markov

process. This development makes forecasting possible within our dynamic propagation

scheme. The third and most important development is the extension of the CEG propaga-

tion algorithm in Thwaites et al. (2008) so that it can handle temporal evidence concerning

holding times at vertices. The CT-DCEG is a large and powerful class of models and there

are various promising avenues for future research following from the work presented in this

chapter; some of which are described below.

The model selection special case presented in this chapter rests on a rather strong

assumption but one that simplifies the model selection process and allows us to begin a con-

versation on model selection for CT-DCEGs. The CT-DCEG is a very rich class of models

and our model selection assumption here restricts us to a limited subclass. However, note

that the other methodologies described in this chapter are still valid to all CT-DCEGs. Free-

man and Smith (2011b) proposed a model selection procedure for a dynamic variant of

CEGs where the underlying event tree is not infinite but instead has changing stage struc-

tures at each discrete time point. The changing stage structure is described with an underly-

ing steady model (Smith, 1979, 1981). With the terminology described in this chapter, this

method is equivalent to the repeating subtrees being structurally isomorphic to the invariant

subtree. However, the unrolled passage-slices CP(k), for k ∈ N would not necessarily be iso-

morphic to each other in the structure or colour preserving sense as the stage structure, and

hence, the position structure of the underlying invariant/repeating subtrees could change for

135



each k. Thus, the method in Freeman and Smith (2011b) can be employed for model selec-

tion in CT-DCEGs using the invariant subtree as the required finite event tree. However, the

key difference is that the staging structure would change at each consecutive passage-slice

rather than at each discrete time step. Another possible model selection methodology for

CT-DCEGs could be based on non-stationary DBNs (J. W. Robinson & Hartemink, 2008;

Grzegorczyk & Husmeier, 2009) where the structure and/or parameters are allowed to vary

among time-slices based on Bayesian multiple change-point process. However, care must

be taken while implementing such models to not overfit the time series data under the in-

creased flexibility of these models. The suitability and applicability of such methodologies

with respect to the CT-DCEG model class would need to be further investigated.

Further, notice that unrolled graph of a CT-DCEG generalises its original graph in

the sense that it offers the flexibility to set arbitrary distributions for the parameters in each

passage-slice. If the interest is in only a small number of passage-slices, the stage structure

for the unrolled CEG over the corresponding passage-slices can directly be learned using

the AHC algorithm on its situations and edges to identify the situation and edge clusters

respectively. As before, we can use the log marginal likelihood score given in Equation 5.6

for this purpose, and conjugate updating can be performed as described in Section 5.3.1.

In our propagation algorithm, we restricted the elements of our temporal evidence

to be point observations. In continuous time settings, it is often of interest to be able to

propagate information obtained through interval temporal observations, e.g. the individual

was in the state represented by vertex wi from time [t1, t2). Within CTBNs, such interval

observations have been propagated using expectation-propagation algorithm as described

in Nodelman et al. (2005) and Saria et al. (2007). This method could be further explored

for CT-DCEGs.

Another interesting extension of our methodology would be to incorporate addi-

tional heterogeneities introduced by interdependence of adverse repeated events (such as

repeated falls in our dynamic falls example). This would particularly be beneficial in the do-

mains of reliability, survival analysis, ecology and conservation studies. The motivation for

such developments can be drawn from conditional frailty models used in survival and event

history analyses (Clayton, 1991; Box-Steffensmeier & De Boef, 2005; Box-Steffensmeier

et al., 2007). These models incorporate heterogeneities across individuals as well as those

induced by event dependence using random effects. The key idea behind this is that while

a group of individuals may observe the same sequence of events (given by a walk in a

CT-DCEG) and may have similar patterns in experiencing these events, the correlations

and timings in the occurrences of future events for each individual (even if the same future

events are observed by each individual) may be dependent on the correlations and timing of

the occurrence of their past events.
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We note that the developments presented in this chapter immediately allow us to

develop a special subclass of discrete time DCEGs where edges may have arbitrary discrete

holding time distributions. A model from this subclass would have an alternative represen-

tation in the form of a discrete time semi-Markov process. Time-invariant covariates could

be incorporated in this special subclass in the same way as described in this chapter.

An interesting subclass of CT-DCEGs is explored in the next chapter. It is called the

reduced dynamic chain event graph (RDCEG) (Shenvi & Smith, 2019) and it is based on

conditioning on individuals not dropping out of our population of interest. This results in

the RDCEG being valid for a different population as long as it shares the same missingness

mechanism as the population for which it was developed. Note here, that this is counter-

cultural to how missingness is typically handled in public health, as it redefines the target

population (for modelling of informative dropouts in medicine, see e.g. Billingham and

Abrams (2002) and Alaa et al. (2017)). We explore the benefits and drawbacks of the RD-

CEG in the next chapter when we review its application to a policing process as presented

first in Smith and Shenvi (2018) and later extended in Bunnin and Smith (2019).
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Chapter 6

Bayesian Modelling of Criminal
Collaborations with CEGs

In this chapter, we demonstrate how CEGs can be used in combination with other models to

describe a complex longitudinal process, where each model is a component within a larger

composite model representing a distinct aspect of the process. We present here a policing

application to model criminal collaborations between individuals within a population of

suspects. This application is a culmination of a series of developments which are described

below and presented in detail later in this chapter.

The use of CEGs for modelling criminal and policing applications was initiated in

Smith and Shenvi (2018). This research report introduced a new subclass of continuous

time DCEGs called the reduced dynamic chain event graph (RDCEG) and presented some

generic features of an RDCEG for modelling lone criminals based on empirical sociolog-

ical and psychological analyses of criminals involved in assault and violent crimes. The

RDCEG subclass involves conditioning on individuals not dropping out of the population

of interest. This model subclass was formally developed in Shenvi and Smith (2019) which

also presented two public health applications of this novel subclass: the first, a public health

intervention to reduce falls-related injuries among the elderly and the second, an interven-

tion to assess the effects of delayed treatment by anti-epileptic drugs on those who present

with early epilepsy and single seizures. Extending the application framework presented in

Smith and Shenvi (2018) and the model foundations in Shenvi and Smith (2019), Bunnin

and Smith (2019) then presented a three-level hierarchical model, called the radicalisation

and violent extremism (RVE) model – with an RDCEG at its deepest level – to support the

police in monitoring the progression of an individual to a violent attack against the gen-

eral public. The criminal collaboration model for a population of suspects presented in this

chapter builds on this existing work, and has two main components: a collection of RVE
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models, one for each suspect in our population, and a novel dynamic network model.

Based on the series of developments presented above, this chapter is organised as

follows. Section 6.1 motivates the modelling of lone criminals and criminals acting in

concert with the three-level RVE model and the two-part criminal collaboration model re-

spectively. Section 6.2 introduces the RDCEG model subclass, and discusses its scope

and limitations. Most importantly, we discuss what this model subclass’ conditioning on

not dropping out implies about the missingness mechanism of the process being modelled,

and how it redefines the target population. In Section 6.3 we present a review of the RVE

model for modelling the progression of lone criminals to violent attacks against the gen-

eral public. This review is largely based on the work of Bunnin and Smith (2019), with

examples drawn from Smith and Shenvi (2018). Section 6.4 briefly reviews the existing

literature of statistical network models for analysing criminal networks. In Section 6.5 we

present a novel dynamic network model that can integrate pairwise observational commu-

nications data with prior knowledge on suspected individuals to determine the extent of

information directly exchanged between pairs of suspects. By assuming certain plausible

conditional independencies, we show how the distributions of the random variables mea-

suring the pairwise information exchange can be updated in closed form using the concept

of steady modelling (Smith, 1979, 1981). Further, we demonstrate in Section 6.6 how this

network model can be integrated with the individual hierarchical RVE models to construct

an integrating decision support system (IDSS) (Leonelli & Smith, 2015). An IDSS refers to

a network structure connecting different models that integrate expert knowledge and judge-

ment to enable reasoning about distinct aspects of a complex system into a coherent and

consistent tool which could be used for decision making. To construct such an IDSS, here

we use a decoupling methodology first introduced for the class of Multiregression Dynamic

Models (MDMs) (Queen & Smith, 1993). We show how this methodology can be easily

transferred to our setting. Finally, we use this IDSS to construct simple yet informative

threat scores for a known or suspected criminal cell that would enable policing authorities

to monitor the evolution of the threat they pose as a collaborative unit. In Section 6.7 we

review a practical application of our criminal collaboration model using a simple example

with simulated data. Finally, in Section 6.8 we conclude with a discussion.

The criminal collaboration model presented in this chapter derives from a collabo-

ration with F. Oliver Bunnin and Jim Q. Smith under the Alan Turing Institute’s Defence

and Security programme, reported in the pre-print Bunnin et al. (2020). Section 6.7 is the

work of Bunnin and is presented here, with permission, for completeness. Sections 6.4,

6.5.1, 6.5.2 and 6.6.3 were jointly developed with the co-authors.
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6.1 Motivation and Introduction

Individuals who plan to commit acts of violence against the general public typically need

to carry out a sequence of preparatory tasks before they can execute their plans. Polic-

ing authorities, after acquiring the necessary legal permissions, can monitor the activities

of suspected criminals in order to protect public safety (see e.g. “Investigatory Powers

Act (c.25)” (2016)). While these suspects may consciously try to hide or disguise their be-

haviour, their engagement in the necessary preparatory tasks will typically give rise to some

observable data. This data may very well be incomplete and noisy. However, when com-

bined with domain expertise, they can be informative of the progression of a suspect to an

attack. Bunnin and Smith (2019) proposed a three-level hierarchical model, hereafter called

the Radicalisation and Violent Extremism (RVE) model, for extracting signals from noisy

observable streaming data on suspected criminals to provide the policing authorities with a

tool to evaluate the imminence of the threat posed by a suspect acting as a lone criminal.

At the deepest level of this hierarchical model is a reduced dynamic chain event

graph (RDCEG) model which was first introduced in Smith and Shenvi (2018) and formally

developed in Shenvi and Smith (2019). The defining property of the RDCEG is that it

conditions on individuals – within an open population – not dropping out of the population

of interest. The open population implies that individuals can enter and leave the model from

almost any state. The RDCEG focuses inference on those who continue to be part of the

population of interest. Hence, the RDCEG is useful within domains where missingness is

a common feature yet the missingness mechanisms (i.e. the mechanism describing how the

missing values are distributed within the data) are hard, if not impossible, to identify with

any amount of certainty. Policing is one such domain.

Further, individuals intent on terrorism may act in concert with other like-minded

people to co-ordinate themselves so as to present a much more severe threat (Anderson,

2016; Kirk-Wade & Allen, 2020). The structure, scope, dynamics and intent of such crimi-

nal networks can be very diverse (Morselli, 2009). Use of statistical techniques from social

network analysis (SNA) to analyse criminal networks is a very active area of research (see

e.g. Sparrow (1991), Krebs (2002), Berlusconi et al. (2016), Broccatelli et al. (2016), and

D. Robinson and Scogings (2018)). While identification and disruption of the activities of

criminal networks is a prime objective of police and security forces (Europol, 2018; Kirk-

Wade & Allen, 2020), this comes with challenges similar to those faced when modelling

lone criminals: criminals may hide or disguise their intentions and activities; personal com-

munications are private and are often encrypted, and numbers and powers of the policing

authorities are rightly limited in democratic societies. However, criminals do need to per-

form certain activities and to communicate in order to organise and execute attacks. Just as
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in the case of lone criminals, activities and communications within a criminal collaboration

typically give rise to some observable data that in conjunction with domain knowledge can

be used to construct statistical models to aid prevention and disruption of attacks. Again,

policing authorities can observe these suspected individuals after the necessary legal per-

missions are sought.

Performing a multivariate extension of the RVE modelling technologies to model

criminal networks in a way that it takes into account the connections between the individ-

uals within a criminal group is far from straightforward. It requires bespoke graphically

supported probabilistic models of groups of criminals over a given population cooperating

in a way that leads to an attack cell. This type of model then needs to be combined in a

coherent way with the RVE models we have of the individuals within that population so

that the criminal threat posed by each member of the group can also be taken into account.

In this chapter, we propose a new class of models that is able to do this. This model, called

the criminal collaboration model, is described below.

Our criminal collaboration model, which was first reported in Bunnin et al. (2020),

consists of two parts: (1) a weighted dynamic network model that analyses pairwise links

among suspects forming the vertices of the network, and (2) the collection of individual

RVE models of each suspect in the network. The latter are as described in Bunnin and

Smith (2019) and reviewed in Section 6.3. The network model is composed of suspects

within the criminal network as vertices. An edge between two individuals indicates a po-

tential collaborative link between them. The weight on the edge measures the extent to

which information is being shared between two individuals. Observations of pairwise com-

munications between individuals are then used within a steady model (Smith, 1979, 1981)

formulation to estimate the random variables modelling these edge weights. Through the

steady model, our network takes into account the temporal dimension of the evolving link

between suspects. Such links between individuals are informative of the flow of informa-

tion between them and hence, may inform potential joint attacks. Additionally, the steady

model formulation enables our inferences to be driven by closed form recurrences. This not

only means that the method computes forecasts quickly in real time and its inference is scal-

able to much larger networks, but also that the model and its parameters remain transparent

and interpretable throughout. We emphasise that the latter property is essential in sensitive

domains such as policing, and empowers the decision makers to make well-informed and

defensible decisions guided by the model. This guided our decision to use a simple be-

spoke dynamic network methodology with steady evolutions rather than using alternative

more established network methods (Goldenberg et al., 2009; Fortunato & Hric, 2016) such

as stochastic block models (e.g. Airoldi et al. (2008) and Xing et al. (2010)) and latent space

network models (e.g. Hoff et al. (2002) and Sewell and Chen (2016, 2017)) which typically
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result in the need for MCMC or variational methods to deal with the loss of conjugacy.

To operationalise the criminal collaboration model, it is necessary to integrate the

individual RVEs with the dynamic network model. We can seamlessly combine the outputs

of the RVEs and the dynamic network model by using the decoupling methodology of

MDMs (Queen & Smith, 1993). This effectively makes our criminal collaboration model

an IDSS (Leonelli, 2015; Leonelli & Smith, 2015; Smith et al., 2015) while retaining the

closed form recurrences and hence, transparency across the decision support system. We

then demonstrate how we can use this integrating system to define suitable cell-level threat

scores to estimate the current and future threat posed by a known or suspected criminal cell.

Thus we present a network methodology that is customised to the prevention of criminal

attacks through the use of domain knowledge and data available to the counter-terrorism

and policing authorities. Further, this system is flexible enough to implement interventions

to the system in real time. The class of models we propose here is to our knowledge entirely

new.

The work presented in this chapter is part of a larger initiative at the Alan Turing

Institute to develop a decision theoretic framework to model potential individual and group

criminal attacks as well as the action space and objectives of policing authorities. Thus,

modelling the following issues comes under the purview of the project:

1. Progression of an individual to attack;

2. Social network among potential criminals;

3. Progression of a known or suspected group to an attack;

4. Identification of new potential groups.

The first of these was addressed by Smith and Shenvi (2018) and Bunnin and Smith (2019).

The work presented in this chapter, reported in Bunnin et al. (2020), aims to address the

second and third points. We discuss approaches to address the final point in Section 6.8.

6.2 The Reduced Dynamic Chain Event Graph

In this section, we introduce the RDCEG subclass of the CT-DCEG class introduced in

Chapter 5. The RDCEG subclass was specifically developed to deal with challenges associ-

ated with modelling processes based on open populations. Depictions of open populations,

i.e. populations where people can immigrate and emigrate, occur widely in ecology, con-

servation and epidemiology, see e.g. Goffman (1965) and Nisbet and Gurney (1982). The

individuals of these populations are in a constant state of flux due to a variety of reasons.

This might include individuals moving from the region of study, their failing or improving

health or death.
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In the contexts described in this chapter, although emigration causes missingness,

the processes driving the missingness are not only difficult to correctly identify (Little et

al., 2017) but are often not random in any sense – i.e. under the classification introduced in

Rubin (1976), the missingness mechanism is typically missing not at random (see Section

6.2.2). In several scenarios, such as the policing application discussed later in this chapter,

we find that the population on which inference usually needs to be made is within the

dynamically changing extant population and not the larger general population from which

this subpopulation is selected. An example of such a scenario is given below.

Example 6.1 (Smoking intervention). Suppose that a public health body wishes to analyse

the effectiveness of its smoking cessation programme among those who register and stick

with the programme. In this case, the inference we would be interested in conducting is not

on the general population of smokers within the catchment area of the public health body,

but rather on the subpopulation of individuals – drawn from this population – who register

for the smoking cessation programme and stick with it. Of course, the public health body

may very well be interested in understanding what drives registration and retention within

the programme. However, these are distinct from the modelling purpose described above.

Later in this chapter, we look at a policing example where an RDCEG is involved

in modelling the activities of suspected criminals. In this case, we note that individuals

may leave our population of interest for reasons such as being arrested, deported, dying

or perhaps even choosing to leave behind a life of crime. The local policing authorities

typically are concerned with the possibility of criminal acts of violence against the general

public within their jurisdiction. Hence, once an individual drops out of the subpopulation

of threatening criminals within the jurisdiction of the local authorities, they may no longer

be of interest to them. Thus, given already existing shortages of personnel and finances,

the authorities may only be interested in those individuals who continue to pose a risk. The

graphical model used to represent this process must reflect this. We note that there are

likely to be regional, national and international security bodies who may also be interested

in monitoring those individuals who used to pose a threat in the past but don’t anymore.

Again, as far as the local policing authorities are concerned, that is not within their purview

and modelling the currently extant subpopulation is sufficient for their purposes. However,

great care must be exercised to not generalise the results of analyses carried out on this

subpopulation, see discussion in Section 6.2.2.

For the reasons described above, within such a setting we find it expedient to build

statistical models of the extant population directly rather than using the non-ignorable re-

sponse methods which would necessarily involve an additional model of the, here very com-

plex, missingness mechanism (Little & Rubin, 2019). Hence, the RDCEG is parametrised
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conditioning on individuals not dropping out. We further discuss the implications of such

conditioning on missingness in Section 6.2.2.

6.2.1 Model Description

Consider an infinite event tree T with vertex set V(T ) and directed edge set E(T ). We say

that an event represented by label l is a terminating event if its associated edge e = (v, v′, l) is

directed into a leaf in T , i.e. v′ ∈ L(T ). Suppose that the event tree depicts a process on an

open population. Our target subpopulation is those who continue to engage in the process

being modelled. Individuals can leave this subpopulation of interest from any state for a

variety of reasons that are not directly associated with the primary purpose of modelling.

The events associated with these reasons can be grouped under an umbrella event with the

label “dropping out”. Notice that the event of “dropping out” is necessarily a terminating

event. Moreover, there might be other terminating events, which are within the scope of the

primary purpose of modelling, that individuals in the population could experience. Say that

these events are critical terminating events.

Example 6.2 (Smoking intervention continued). In this example, the public health body will

be interested in studying individuals who have left our subpopulation of interest because

they have quit smoking. Whereas, given the primary purpose of their study, they may be less

interested in those who leave the population for reasons such as moving out of the catchment

area, dropping out due to peer pressure, being unable to continue the programme due to

hospitalisation or poor health. In this case, the terminating event of “quitting smoking” can

be classed as a critical terminating event while the other reasons for leaving the population

may be grouped under the non-critical terminating event “dropping out”.

As the RDCEG depicts events relevant to the extant population, we depict the crit-

ical terminating events explicitly within its graph. The choice of which terminating events

are considered as critical depends on the application and the purpose of modelling. Let

C(T ) ⊆ L(T ) be the set of leaves into which edges associated with critical terminating

events enter, and D(T ) = L(T )\C(T ) be the set of leaves associated with non-critical ter-

minating events, i.e. dropping out for other reasons.

Definition 6.3 (Modified Event Tree). The modified event tree M of an event tree T =

(V(T ), E(T )), with D(T ) denoting its set of leaves associated with non-critical terminating

events, is obtained as the subgraph of T induced by the vertices V(T )\D(T ).

The transition probabilities along the edges emanating from each situation ofM are

renormalised to ensure that these probabilities sum to one for every situation. Denote the

transition probability parameters for the modified event tree M by ΦM = {θθθ∗v |v ∈ S (M)}
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where θθθ∗v is the renormalised probability vector for situation v. Denote byHHHM = {H(v)|v ∈

S (M)} where H(v) = {H(e)|e = (v, v′, l) ∈ E(M), v′ ∈ ch(v)} is the vector of conditional

holding time random variables associated with the edges emanating from situation v inM.

Note that the holding time distributions along the edges inM are inherited directly from T .

The process of constructing an RDCEG from its modified event tree is identical to

the process of constructing a CT-DCEG from its underlying event tree. Denote by U∗, S∗

andW∗ the collection of stage sets inM, the staged tree obtained by colouring vertices ofM

according to their stage memberships, and the collection of position sets inM respectively.

Denote by ΦS∗ the conditional transition parameters in S∗, and by HHHS∗ the conditional

holding time variables in S∗.

Definition 6.4 (Reduced Dynamic Chain Event Graph). A reduced dynamic chain event

graph (RDCEG) D = (V(D), E(D)) is defined by the tuple (S∗,W∗,ΦΦΦS∗ ,HHHS∗) with the

following properties:

• V(D) = R(W∗) ∪ w∞ if L(S∗) , ∅ and V(D) = R(W∗) otherwise, where R(W∗)

is the set of situations representing each position set in W∗ and w∞ is the sink ver-

tex. Additionally, vertices in R(W∗) retain their stage colouring and for w ∈ R(W∗),

θD(w) = θS∗(w) and HD(w) = HS∗(w).

• Situations in S∗ belonging to the same position set in W∗ are contracted into their

representative vertex contained in R(W∗). This vertex contraction merges multiple

edges between two vertices into a single edge only if they share the same edge label.

• Leaves of S∗, if any, are contracted into sink vertex w∞.

The main feature of the RDCEG is its conditioning on not dropping out of the

population, and hence, redefining the population of interest or the target population. Note

that the RDCEG can also be analogously defined as a subclass of the discrete time DCEG

or any other dynamic variant of the CEG family as long as it retains this key property.

6.2.2 Implications on Missingness

We first note that there are three main categorisations of missingness defined by Rubin

(1976) as given below

• Missing completely at random (MCAR) which implies that the missingness does not

depend on the observed or unobserved values. Here the missing values are a random

subset of the complete data.

• Missing at random (MAR) which implies that missingness depends on the observed

values but not the unobserved values.
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Figure 6.1: In this figure, C marks the whole underlying population, B marks the general
subpopulation of C with the properties that define the individuals the process being studied
applies to, and A marks the subpopulation of B that, given the opportunity, would choose
to or be chosen to engage with the process.

• Missing not at random (MNAR) which implies that the missingness depends on both

the observed and unobserved data.

The processes for which the RDCEG is considered as a model choice are typically

those where we have observational data on an open population, and where missingnesss

is likely to be MNAR. While there exist statistical tests to identify whether the missing-

ness is MCAR (Little, 1988), identification of MAR and MNAR are complicated by the

fact that the data needed to test for these are missing. Schafer and Graham (2002) state

that “missingness is usually a nuisance, not the main focus of inquiry, but handling it in a

principled manner raises conceptual difficulties and computational challenges”. Thus when

dealing with studies where the missingness is MNAR, making inference about the general

underlying population is not typically feasible. However, there is a possible solution in the

case where we are interested in making inference not about the general underlying popu-

lation but specifically about the subpopulation that, given the opportunity, chooses to or is

chosen to engage in the process. More precisely, we can make inference about this specific

subpopulation by conditioning on the missingness mechanism, which is what the RDCEG

model does. Here “engaging with the process” depends on the application. For example, in

the case of the smoking intervention example, it refers to the continual participation in the

smoking cessation programme, whereas in the policing application, it refers to the continual

decision of those in charge to monitor a suspect.

Example 6.5 (Smoking intervention continued). In this example, the whole underlying pop-

ulation (population C) consists of all the individuals within the catchment area of the public

health body irrespective of whether they smoke. The general population of interest (sub-

population B) for this intervention is the population of individuals within the catchment

area who currently smoke. Conventionally, the interest typically lies in making inference
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about this subpopulation B. The individuals who, given the opportunity, would engage in

the smoking cessation programme form subpopulation A. Individuals can move between

these three population categories (see Figure 6.1). The RDCEG model is concerned with

inference about subpopulation A.

Note that in public health and medicine including clinical trials, the target popula-

tion is typically what we mark as subpopulation B in Figure 6.1. In this case, except when

the missing data is MAR or MCAR, it is inappropriate to not include a model for the miss-

ingness mechanism within the model likelihood (Rubin, 1976; Pajouheshnia et al., 2020)

and hence, inappropriate to use an RDCEG model for such settings where the interest lies

in subpopulation B. Within such cases, by conditioning on not dropping out as we do in

the RDCEG, a mismatch is created between our target population and the population for

which we can reasonably make any inference. To see this, suppose first that we have data

Y = {Y1,Y2, . . .} and an observation indicator variable R = {R1,R2, . . .} where Ri = 1 im-

plies Yi is observed, whereas Ri = 0 implies it is missing. From Rubin (1976), we know

that under the selection factorisation the likelihood given data Y will factorise as follows

Lfull(θ, φ | y(1), r) = Lign(θ | y(1))Lrest(φ | y(1), r), (6.1)

only when the missingness is MAR, where y(1) is the observed part of the realisation of Y ,

r is the realisation of the observation indicator, and θ and φ are the parameter vectors of

the data model and missingness model respectively which are independent of each other.

That is, the likelihood of the data model parameter vector θ does not involve a model for

the missingness R. Here, we can directly work with Lign(θ | y(1)) and this term is sometimes

referred to as the “ignorable likelihood” (Little et al., 2017). When the missingness is

MNAR, the above factorisation in Equation 6.1 is not valid and generally, a model for the

missingness mechanism must be explicitly included.

There are two key precedents for conditioning on the missingness mechanism as we

do with the RDCEG. The first is Little et al., 2017 which states that an alternative way of

factorising the full likelihood is

Lfull(θ, φ | y(1), r) = L1(θ | y(1), r)L2(φ | r), (6.2)

which arises from a pattern-mixture factorisation of the joint probability distribution of Y

and R (Little, 1993). Inference for the parameter vector θ in the L1(·) term in Equation 6.2

cannot be typically generalised to the subpopulation B as it conditions on the missingness R.

It must be noted, however, that Little et al. (2017) used Equation 6.2 to write θ = (θ(0), θ(1))

where θ(0) is the subset of θ about which we cannot make any useful interpretation for their

target population (subpopulation B) as the data required to do so is missing, whereas subset
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θ(1) can still be generalised to the target population under certain conditions. Little et al.

(2017) describe the conditions under which inference for θ(1) can be generalised to the target

population. This is quite different to what we are proposing with the RDCEG as we define

our target population to be subpopulation A instead of subpopulation B. However, in this

case, inference for θ in the L1(·) term in Equation 6.2 applies to subpopulation A.

The other key precedent is the approach taken by Geneletti and Dawid (2011) to

identify the causal estimate of the effect of the treatment on the treated (ETT). In fact, their

motivating examples (see Example 1: Training programme and Example 2: Invalid ran-

domisation in Geneletti and Dawid (2011)) are rather similar in structure to our smoking

intervention example and the policing application respectively. In the first there is a volun-

tary choice of who joins subpopulation A, and in the second, individuals are chosen to be

considered in subpopulation A by someone who has the power to do so (in the policing ap-

plication, this would be those in charge of prioritising and de-prioritising cases). Geneletti

and Dawid (2011) state that within observational settings we observe two distinct effects:

• A treatment effect which refers to the power of the treatment to influence the outcome

of interest;

• A selection effect which refers to the fact that these individuals choose to be or are

chosen to be part of the observed subpopulation and so we are not observing random

subsets of the population of interest (referring here to subpopulation B).

The ETT is then defined such that it quantifies the treatment effect for the specific subpop-

ulation of individuals who choose to or are chosen to take the treatment. Note that within

interventional settings, the ETT would involve a decision variable indicating whether the

individual would choose to or be chosen to take the treatment, irrespective of whether they

are actually assigned and given the treatment. Based on the situations for which the RDCEG

is appropriate, these are likely to be observational settings. The RDCEG is thus similar in

spirit to the ETT where our inference is for those who either choose to be part of subpop-

ulation A (e.g. in the smoking intervention example) or those who are chosen to be part of

subpopulation A (e.g. in the policing application).

As stated in Geneletti and Dawid (2011) for the ETT, one has to be very cautious in

generalising the inference made from an RDCEG to a different population. For two popu-

lations with different compositions and attitudes, the relevant observational settings would

most likely be different. This implies that the distributions of individuals who choose to

be part of subpopulation A in these two populations would be different or the behaviour of

those who choose those who are of subpopulation A would be different. Thus inferences

from an RDCEG model designed for a specific subpopulation would not be informative

of individuals, drawn from a different population, who cannot be considered as exchange-
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able with those in the study population. Conditions under which and to what extent these

inferences can be transferable need further consideration.

6.3 Review of the Radicalisation and Violent Extremism Model

In this section, we review the RVE hierarchical Bayesian model for criminal investigations

presented in Bunnin and Smith (2019) as well as the role of the RDCEG within it. An RVE

model is constructed by introducing a hierarchical extension to an RDCEG model – first

presented for modelling criminal activities in Smith and Shenvi (2018) – for an attack by

a lone criminal. The hierarchical structure built on top of an RDCEG model enables us

to extract relevant signals from noisy streaming data which are then used to estimate the

parameters of the RDCEG model. The three-level hierarchical RVE model aims to support

the police in their pursuit of violent criminals acting alone to commit a crime against the

general public. Denote by Ω the open population of persons of interest (POIs) at time t.

Let Ωt ⊆ Ω∗t be the subset of individuals that the authorities have decided to investigate and

monitor at time t. The three levels of the RVE model for a suspected criminal ř ∈ Ω, are

described below.

Deepest level: At this level, the RVE consists of an RDCEG model. The specific

choice of states/vertices to be depicted within the graph of the RDCEG model depend on

the type of criminal behaviour the individual might be engaged in, for example a murder

plot, a vehicle attack etc. The states represented by the vertices of the chosen RDCEG and

its underlying event tree should be such that they reflect the possible paths of progression

for the modelled criminal behaviour. Denote by Wt the latent random variable indicating

the state occupied by the suspect ř at time t > 0. The sample space of Wt is given by the

vertices {w0,w1, . . . ,wn} of the RDCEG.

The event tree of the RDCEG model also includes a state associated with the event

of “dropping out” (called a “neutral” state in Bunnin and Smith (2019)) as described in

Section 6.2. However, for the reasons described earlier, this state is not part of the RDCEG

model itself. Within the RVE context, the “dropping out” or “neutral” state represents that

the individual no longer presents a threat to the general public within the jurisdiction of

the policing authority. Any states associated with critically terminating events, however,

will be part of the RDCEG. Further, Bunnin and Smith (2019) recommend keeping the

number of states depicted within the vertices of the RDCEG as small as possible while

retaining sufficient information to distinguish the relevant states, and testing the suitability

of the chosen states using a clarity test (Howard, 1988). To pass the clarity test, in the

hypothetical situation where a suspect is asked to place themselves within a particular state,

they must be able to do so without ambiguity.
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Example 6.6 (Murder plot). We look at the RDCEG borrowed from an example in Smith

and Shenvi (2018) which illustrates a murder plot using a gun. The RDCEG for this plot

includes states given as “can’t shoot, no gun” (w0), “can’t shoot, has a gun” (w1), “trained

to shoot, no gun” (w2), “trained to shoot, has a gun” (w3) and “attempts murder” (w4).

The “neutral” state is not depicted within the RDCEG model. Figure 6.2 shows the graph

of this RDCEG. The vertex colouring has been suppressed in this graph. The sample space

of Wt for time t > 0 is given by {w0,w1,w2,w3,w4}. The events are represented by the edge

labels in the graph. Note that while “attempts murder” is not an absorbing state here, it is

conceivable to imagine a scenario where such a state is absorbing and hence is associated

with the critically terminating event of “locating and approaching target”. This would then

imply that the suspect can only attempt the murder once irrespective of the outcome of the

attempt.

Figure 6.2: Graph of the RDCEG for the murder plot.

Of interest within the RDCEG model are the parameters of the transition probability

and holding time distributions. In many instances within the domain of policing, routine

measurements concerning suspects may be recorded and reported at fixed time intervals

(Bunnin & Smith, 2019). In such cases, generally the process being modelled reduces to a

discrete time process even though the underlying process evolves in continuous time (see

Section 5.1). However, within this application, we find it beneficial to retain the underlying

model as evolving in continuous time. This is discussed in Section 6.3.1.

Smith and Shenvi (2018) provide several types of categorisations for a wide range

of criminal behaviours which can be used to inform the states of the RDCEG. The states

of the RDCEG can also be customised to the individual ř to whom the RVE concerns such

that they represent the history, personality, environment and modus operandi of ř. Lastly,
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it is essential that the states of the RDCEG are defined such that a collection of tasks can be

associated with each state. These tasks form part of the intermediate level described below.

Intermediate level: At this level, the RVE consists of a collection of R tasks asso-

ciated with the RDCEG in the level below. At any time t > 0, denote the task vector at time

t by θθθt = {θt1, θt2, . . . , θtR} where each θti is an indicator variable such that θti = 1 if ř is

enacting task i at time t, for i ∈ {1, 2, . . . ,R}. Each task can be associated with one or more

states of the RDCEG. The purpose of the task vector is to enable the policing authorities to

estimate how far along the suspect is in their progression towards a specified criminal at-

tack. Thus, the task vector at time t can not only provide positive evidence that the suspect

ř is likely to be a certain state wi but can also provide negative evidence that the suspect,

initially believed to be in some position wi, is not performing the tasks associated with this

state and hence, must be in a different state.

Example 6.7 (Murder plot continued). Tasks for the example of the murder plot using a

gun might include the following:

θt1 = “Acquires a gun”; θt2 = “Trains to shoot”;

θt3 = “Follows the target”; θt4 = “Secures monetary resources”.

Here task θt1 = 1 for some time t > 0 provides positive evidence for states w1 and w3, and

negative evidence for states w0 and w2. At the same time, if we had both θt1 = 1 and θt2 = 1

then the evidence points towards state w3 rather than w1. If we had θt3 = 1 and θt4 = 1

as well, this might provide evidence in favour of the suspect transitioning from state w3 to

state w4.

The data informing ř’s engagement in these various tasks may range from com-

plete and reliable intelligence to partial and patchy secondary data. The amount of ob-

servations recorded about ř and the reliability of these observations are likely to depend

on how closely the police are monitoring ř. The further away ř is from the main inves-

tigation, the more indirect the observations are going to be. However, even noisy signals

obtained from partial data can help the police to condition on the limited information under

the Bayesian RVE model and revise these judgements accordingly. The data on ř and the

signals obtained from the data form a part of the surface level of the RVE.

Surface level: This level consists of the data {Yt}t≥0 relating to activities of the

suspect ř . This typically refers to the data collected by the policing authorities by directly

monitoring the individual, when they have the necessary resources and authorisation to

do so. However, it can also include secondary data that is typically received at irregular

intervals. For each task θti, we can associate a subset Yti ⊆ Yt of the data stream observed

at time t which informs whether ř is engaged in task θti, for i ∈ {1, 2, . . . ,R}. It will
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typically be necessary, especially if the data is noisy, to use a filter to obtain filtered data

Zti from the data subset Yti to extract any viable signal from the noise. Denote by {Zt} =

{Zt1,Zt2, . . . ,ZtR}. Here a filter is simply a suitable function τi(·) of the data Yti. It is essential

that this filter is chosen such that it is sufficiently capable of identifying when the activities

of the suspect indicate that they are actually engaging in a particular task rather than other

innocent and benign activities.

Example 6.8 (Murder plot continued). Example of observations may include the following:

Y1 = “Seen around target”; Y2 = “Personal threats made to target”;

Y3 = “Visits to shops selling guns”; Y4 = “Meetings with trained radicals”.

Here Yt = {Y1,Y2,Y3,Y4}. This data can be associated with the different tasks; for instance

Y3 can be associated with task θt1, in other words Yt1 = {Y3}. An example from Bunnin and

Smith (2019) of a filter τi for task θti is given below

Zti = τi(Yt)

=
1
|I(θti)|

∑
i∈I(θti)

ỹti, (6.3)

where ỹti is the standardisation of Yti and I(θti) is the index set of the components of Yt

associated with task θti. Here standardisation refers to subtracting a pre-defined mean from

the observation and dividing it by a pre-defined standard deviation estimated by domain

experts (Bunnin & Smith, 2019).

Other examples of simple filters include first-order differences, short term averages

etc. of the derived data. Expert judgement and any available data would be essential here

to distinguish the distributions of p(Zti | θti = 1) and p(Zti | θti = 0). The more distinct these

distributions are, the easier it is to estimate whether θti = 1 in light of the filtered data Zti.

6.3.1 Recurrences in the RVE Model

For the RVE model to be operationalised within the domain of policing, it is essential that

the initial state priors as well as the priors for the parameters of the transition probability

and holding time distributions are set using expert judgement. Recall that, as described in

Bunnin and Smith (2019), in many instances the observation data on individuals is sequen-

tial and recorded at regular discrete time points. However, the underlying evolving threat

state of the suspect ř evolves in continuous time. Further, some of the data on ř may be

recorded unexpectedly at irregular time intervals, as they arrive, due to the nature of the ap-

plication. This typically is an issue with secondary data. Hence, for this type of application,
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it is beneficial to still model the RVE model as evolving over continuous time despite many

of the routine observations being recorded at fixed time intervals.

We briefly review here the recurrence equations for the RVE model as presented

in the supplementary material of Bunnin and Smith (2019). The key point here is that

within a semi-Markov process when the probability of transition over a particular interval

of time is specified, its embedded Markov structure can be exploited to define the recurrence

equations for the model.

We assume that within a short interval of time (t, t′] only one state transition can

occur, for t′ > t ≥ 0. Let Hi(t, t′) denote the probability of transition out of state wi during

this time interval where Hi is the unconditional holding time distribution at state wi. Note

here that Bunnin and Smith (2019) use the unconditional holding time at a state wi rather

than the conditional holding times we use in Chapter 5 and Section 6.2. However, these

recurrences can also be defined using conditional holding times, see e.g. Becker et al.

(2000) and Moura and Droguett (2008). Further, denote by M0 a matrix whose (i, j)th entry

represents the probability of a transition from state wi to state w j. Denote by M(t, t′) the full

transition matrix which is the product of the conditional transition probabilities and the state

dependent probabilities of transition in the time interval (t, t′]. The recurrence equations are

then given as

p(Wt = wi |ZZZt−1) =
∑
w j

p(Wt−1 = w j |ZZZt−1)M j,i(t − 1, t) (6.4)

p(Wt = wi |ZZZt) ∝ p(Wt = wi |ZZZt−1) ×
∑

θ∈θθθt(wi)

p(ZZZt | θ)p(θ |Wt = wi) (6.5)

where θθθt(wi) ⊆ θθθt denotes the set of all tasks which are in any way relevant to state wi.

The recurrences given in Equation 6.4 and 6.5 describe how we can combine the

discrete sequential observational data with the underlying continuously evolving threat state

on an individual. The detailed example in Section 5 of Bunnin and Smith (2019) models a

suspect working towards a vehicle attack where the data updates occur on a weekly basis.

Also in this example in Bunnin and Smith (2019), the “dropping out” or “neutral” state is

included explicitly within the model and is only visually hidden in the graph.; i.e. there is

no intermediate modified tree construction and the conditional transition probabilities are

not renormalised after excluding the dropping out states and the edges entering them. The

model in this example is therefore more akin to a CT-DCEG (connected to the discrete

observations using the recurrences mentioned above) with the neutral state hidden in the

graphical representation rather than an RDCEG as described in Section 6.2. However, the

methodologies described in Bunnin and Smith (2019) are still applicable to, and in fact

were designed for, an RDCEG model.
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6.4 Related Research

In this section, we review the existing literature concerning statistical network methods

used for analysing criminal networks. Network data relating to activities of opposition and

criminal forces have been analysed using SNA methods including link analysis for a long

time, going back to at least World War II (Departments of the Army and the Air Force, 1948;

van Meter, 2002; Cunningham et al., 2015). Examples of link analysis and network survey

methods being used to gain intelligence and strategise can also be found from The Troubles

in Northern Ireland, and in Thailand in connection to the fight against the Communist rebels

(van Meter, 2002).

Within academic contexts, the merits of network analysis for terrorism research

were originally assessed by Sparrow (1991) in his seminal paper. The author motivated

the importance of network analysis concepts such as centrality, node degree, betweenness,

closeness, stochastic equivalence and Euclidean centrality after multidimensional scaling

within the context of criminal and terrorist networks. He further emphasised issues such

as “weak ties” which indicate that the most valuable and urgent communication channels

are likely to be those “which are seldom used and which lie outside the relatively dense

clique structures”, “fuzzy boundaries” which indicate that boundaries of criminal networks

can be quite ambiguous, and “incompleteness” indicating that data relating to criminal net-

works are likely to be incomplete with MNAR missingness. Prior to the work of Sparrow

(1991), the leading method of network analysis within law enforcement was the Anacapa

charting system (Harper & Harris, 1975) developed by Anacapa Sciences Inc., California

and widely used since its introduction. This charting system provided a two-dimensional

visual representation of the link data. However, Anacapa charts are primarily visualisation

tools, allowing the user to clearly pick out features such as links, centrality, cliques etc but

the charting system itself does not involve any analysis of the data these charts represent.

Following Sparrow (1991), the application of statistical network analysis methods

within criminal and terrorist networks has been researched extensively. These include cen-

trality measures to identify key individuals and heterogeneous roles (Lee et al., 2012; Toth

et al., 2013), Bayesian bipartite graph methods to identify overlapping cells (Ranciati et

al., 2020), multipartite graph methods to cluster similar terrorist groups (Campedelli et al.,

2019), and dynamic line graphs to visualise the temporal dynamics of terrorist actors in

covert actions and events (Broccatelli et al., 2016), and spectral clustering to identify crimi-

nal cells (van Gennip et al., 2013). A discussion on the use of link prediction methodologies

in criminal networks can be found in Section 6.8.

The existing criminal network research, while being a growing field, is not always

inclusive of the multitude of real-time regular and irregular data channels available to polic-

154



ing authorities. Often, the methodologies developed cater to a fixed data channel (see e.g.

Iqbal et al. (2012), Ferrara et al. (2014), and Sarvari et al. (2014)). Criminal network re-

search, while taking into account the connections and communications between the indi-

viduals, often fail to take into account the underlying trajectories of each individual within

the network. Our criminal collaboration model aims to contribute to the field by propos-

ing a novel statistical dynamic network, which takes into account the temporal evolution of

the connections between pairs of individuals, together with structured stochastic processes

describing the personal criminal trajectories of the individuals in the network.

6.5 The Dynamic Network Model

In this section we present the dynamic network model which along with the RVE model

described in Section 6.3 forms our two part criminal collaboration model. The criminal sus-

pects monitored by the policing authorities are the vertices in the dynamic network model,

and an edge between two suspects indicates direct exchange of information between them.

This dynamic network is weighted, and the weight associated with an edge between two

suspects measures the extent of information being shared between them. We first describe

in Section 6.5.1 the types of pairwise communications data that the policing authorities

might have access to, which can be used to inform these edge weights. We then describe

our dynamic network model in Sections 6.5.2 and 6.5.3.

6.5.1 Pairwise Communications Data

Collaboration between criminals gives rise to observable data of various kinds. In particular,

individuals need to be able to communicate and exchange information between them in

order to carry out a criminal act together. Within a criminal group, it is essential that each

member of the group is able to share information with at least one other member of the

group for the group to be functional as a joint unit. Therefore in our dynamic network

model, we focus on measuring the extent of information being directly shared between

pairs of individuals.

Policing authorities typically receive information from multiple data channels. Some

example channels are the monitoring of physical meetings, interception of electronic com-

munications, and intelligence obtained from other policing agencies, covert informants, or

the public. There are at least five types of potentially knowable or observable data that can

be obtained by the policing authorities:

• Existing kinship or social links;

• Work or other shared affiliations;
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• Bilateral electronic communications (e.g. telephone, email, Whatsapp etc);

• Physical meetings (observed directly or through closed circuit television);

• Financial transactions (e.g. bank transfers between accounts).

The first two items are relatively static whereas the others are more dynamic. Moreover the

first two are not necessarily caused by criminal collaboration, but may enable a pre-existing

tie that facilitates collaboration once other factors have come into play. Examples of these

ties are the school and social ties that existed between several of the Al-Qaeda September

11, 2001 terrorists (Krebs, 2002), the kinship tie between Saleem and Hashem Abedi, the

former being the suicide bomber of the May 22, 2017 Manchester Arena bombing, the

latter his brother who was found guilty of aiding Saleem (Parveen & Walker, 2020), and the

community ties surveyed by the US army in Thailand villages in 1965 (van Meter, 2002).

The first two items thus inform creation of an edge between two individuals whereas the

others inform edge creation as well as the edge weights between two individuals.

Note that it is important to differentiate two types of data associated with commu-

nications: the content of such communications and “secondary data”, i.e. metadata such

as the identities of parties and the timing, location and duration of communications. Often

secondary data is available whilst content data is unavailable due to either encryption or

limits prescribed by certain interception warrants. Moreover due to technology companies’

planned future adoption of encryption for a wider range of communication technologies, the

availability to investigators of content data is likely to decrease (Watney, 2020). However,

even secondary data without content data has proven to be extremely useful: “so-called

secondary data can enable the tracing of contacts, associations, habits and preferences”

(Anderson, 2016). Our model assumes at a minimum some availability of secondary data.

Whilst content data is not required it can be utilised when available in informing the cre-

ation of edges and edge weights in the dynamic network model and modification of task

intensities in the RVE model.

6.5.2 Notation

As described earlier, let Ω∗t be the open population of POIs at time t and let Ωt ⊆ Ω∗t

be the subset of individuals that the authorities have decided to investigate and monitor

at time t. Further, recall that typically routine monitoring data collected by the policing

authorities are likely to be recorded at fixed time intervals. Here we are modelling the

extent of information that can be shared between any two individuals within our network.

For this purpose, we find it sufficient to treat the time t as discrete. For example, the discrete

time steps can be hourly, daily or weekly depending on the granularity that best suits the

observation process. While unexpected observations may arrive irregularly between the
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discrete time steps, unlike in the RVE model, we find that the discretisation is unlikely to

lead to significant loss of information due to the scope of the network model and the fact

that in practice, its outputs are meant to be used in conjunction with the RVE models of the

individuals forming the network, as described in Section 6.6.

For concreteness, note that the size of Ωt may be in the hundreds and Ω∗t in the

thousands (Anderson, 2016). During each time period, new leads are discovered. From

among these leads, new investigative cases are opened for those that pass a triage process

meeting defined criteria. This typically includes the following aspects: (i) Risk: is there

any evidence of risk in intelligible form, (ii) Credibility: is the information reliable; (iii)

Actionable: can anything actually be done about it; (iv) and Proportionality: is investigation

of the lead necessary and proportionate within legal and statutory obligations, resources and

priorities (Anderson, 2016; Kirk-Wade & Allen, 2020). The triage process thus gives rise

to a set of newly identified individuals at each time interval. Denote by Ω+
t the individuals

who join the set Ωt during a time interval. Over the same interval, a set Ω−t are lost from

Ωt for a variety of reasons as discussed in Section 6.3. For simplicity, assume that Ω+
t join

the set Ωt at the start of the time period t and existing individuals Ω−t are lost at the end of

t. Thus we have

Ωt = {Ωt−1\Ω
−
t−1} ∪Ω+

t . (6.6)

We create an undirected network Nt at each time t where

Nt = (V(Nt), E(Nt)) (6.7)

where V(Nt) = Ωt are the vertices and E(Nt) are the edges of the network. An edge exists

ei j ∈ E(Nt) between two individuals ři and ř j if

1. They share an existing familial or social link;

2. They have committed crimes together in the past;

3. They have shared affiliations;

4. Since becoming POIs, they have been observed communicating with each other.

Once an edge is created in Nt between some ři, ř j ∈ Ωt, there exists an edge

between them for all Nt′ where t′ ≥ t. Let φi jt be the random variable measuring the

collaborative link, i.e. the extent of information directly shared between ři and ř j at time

t. Thus φi jt gives the edge weight on the edge ei j between ři and ř j in Nt. Denote by Φt

a |Ωt| × |Ωt| symmetric matrix with its (i, j)th entry given by φi jt. By convention, we set

φi jt = 0 if i = j or ei j < E(Nt) for i , j. The pairwise communications data (Section 6.5.1)

are used to infer φi jt. Below we introduce some notation for the pairwise communications

data.
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Example 6.9 (Criminal network). This example is borrowed from Bunnin et al. (2020). We

consider here the investigative activities of a policing authority in a particular hypothetical

town in the UK. The time steps here are assumed to be weekly. Four individuals from this

town, namely ř1, ř2, ř3 and ř4 have been observed to have posted pro-terrorist material

on social media and have been triaged into Ωt the observed subpopulation at time t. Also at

time t, a separate lead reveals the return of an individual ř5 – who was known to previously

have pro-terrorist ideas – from a country whose local terrorist groups are known to run

large radicalisation campaigns targeting foreign individuals. Thus, the subpopulation of

suspects under investigation at time t is given by Ωt = {ř1, ř2, ř3, ř4, ř5}. The preliminary

investigation revealed that ř1 and ř2 attended the same secondary school and are the same

age, and that ř2 and ř3 attend the same gym and are frequently seen together. Further,

ř4 and ř5 were both known affiliates of, a now defunct, local criminal group, and ř1 and

ř5 were arrested together for a minor offence in the past. Due to these pre-existing links,

edges e1,2, e2,3, e4,5 and e1,5 can be created at time t, see Figure 6.3(a). In the duration

of the week represented by time t, ř5 has been arrested and extradited to another country,

with which the UK shares an extradition agreement, on a serious accusation of kidnapping

and murder. Thus, ř5 is no longer a person of interest to the local policing authorities, and

hence, Ωt+1 = {ř1, ř2, ř3, ř4}. The network at time t + 1 is represented in Figure 6.3(b).

The authorities continue their monitoring activities on these individuals through the weeks

represented by time t + 1 and t + 2 with no changes to the structure of the network, see

Figures 6.3(b) and 6.3(c). At time t + 2 it is discovered that mobile phones newly registered

to the addresses of ř1 and ř4 are in communication. This creates a tie between ř1 and ř4

as shown in Figure 6.3(d).

Recall that the policing authorities are likely to receive data from multiple channels.

Suppose that there are m such communication channels. The data from each channel is

recorded through a summary measure in our model. This summary measure can take a

variety of forms depending on the type of data such as a sum of the observations (e.g.

duration of phone calls or number of text messages exchanged) or a first-order difference

(e.g. increase or decrease in money exchanged from one time to the next). Depending on

the different communication channels, these summary measures can be on very different

scales of measurement. For instance, the policing authorities might receive information

from two communication channels: phone call records and bank transactions. Suppose

that the phone calls are summarised in number of hours that the call lasted, and the bank

transactions simply as the absolute value of the amount of money exchanged between the

pair. In this case, x hours of a phone call is not equivalent to £x of money exchanged. To

balance the effect on φi jt of data relating to different channels, the data obtained through the

different channels needs to be on a comparable scale. This can be achieved through any of
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(a) At time t (b) At time t + 1

(c) At time t + 2 (d) At time t + 3

Figure 6.3: Structure of network at times t, t + 1, t + 2 and t + 3.

the standard methods of scaling or normalisation (Jahan & Edwards, 2015).

Denote by si jkt the, possibly scaled/normalised, summary measure of the data ob-

served between the pair ři, ř j ∈ Ωt from channel k at time t. We assume that the following

independence relationship holds:

yk∈{1,...,m} si jkt (6.8)

which implies that the intelligence obtained from the various communication channels for

a given pair {ři, ř j} ∈ Ωt × Ωt at time t are mutually independent. Denote by Ut the

observations matrix at time t with elements ui jt such that ui jt = {si j1t, . . . , si jmt}. Notice

that Ut is a symmetric |Ωt| × |Ωt| matrix with ui jt = u jit due to the nature of the pairwise

communications data. We use the convention that ui jt is an m-dimensional zero vector

whenever i = j, ei j < E(Nt) for i , j, and whenever no information is observed between

two individuals. To indicate the difference in the quality of data obtained from the different

channels, we define a parameter ξk ∈ (0, 1] which denotes the efficiency of the intelligence

obtained from channel k, for k = 1, . . . ,m. This efficiency parameter indicates the loss of
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information expected from a specific communication channel. A value closer to 1 represents

minimal loss of information (e.g. information received about bank transitions), whereas a

value closer to 0 indicates that the actual observations are likely to be much higher than

what has been conveyed to the authorities (e.g. a patchy or poor source of secondary data).

6.5.3 The Steady Model

We now describe how the steady modelling technique (Smith, 1979, 1981) can be used to

inform the edge weights modelled by the random variables φi jt for ři, ř j ∈ Ωt and t ≥ 0.

Typically, under non-Gaussian settings the derived one-step-ahead recurrences needed to

update distributions of φi jt in our network are often not available in closed form. In such

cases sampling or approximation would be required. Although sequential approximations

such as those used in variational inference have some attraction, in our context, approximate

methods would generally be prohibitive in terms of the computational demand and would

also lead to some loss in transparency.

Here we adopt the approach of using a steady model from Gaussion dynamic linear

models (M. West & Harrison, 1997). In a general sense, the steady model manipulates the

posterior at time t − 1 into a prior for time t such that the mean is kept constant or “steady”

with a more diffuse variance. Here, we adapt the steady model into a non-Gaussian conju-

gate Gamma-Poisson setting (Smith, 1979, 1981). Interestingly, a different non-Gaussian

variation of this model has also been applied to modelling online traffic flow count data in

Chen et al. (2018).

To implement the steady model, we assume the following conditional independence

relationships

φi jt y F
−

t | φi j,t−1, (6.9)

ui jt y (Φt,Ut,F
−

t ) | φi jt. (6.10)

where F −t denotes all past data and edge weight random variables up to but not including

time t, i.e. Ut′ and Φt′ for t′ < t. Statement 6.9 is a standard first-order Markov assumption

and Statement 6.10 signifies that the pairwise communications data between any pair of

suspects {ři, ř j} ∈ Ωt × Ωt at a given time t is only dependent on φi jt, the measure of

information being exchanged between them at that time. With these standard assumptions

in place, the relationship between the matrices Ut and Φt can then be represented by a 2-

time-slice DBN (see Section 2.3.1) whose graph is shown in Figure 6.4. This enables us

to estimate the collaborative link φi jt using observational data ui jt for each pair ři and ř j

independently. To see how this links to the dynamic network model, recall that the estimates

of φ·,·,t inform the edge weights in the network model Nt at time t.
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(a) (b)

Figure 6.4: Graphical representation of the 2-time-slice DBN: (a) on a univariate level; (b)
on a multivariate level (labelled as graph G).

Theorem 6.10. The marginal likelihood of the 2-time-slice DBN represented by the graph

G decomposes into the product of the one-step-ahead forecasts. Additionally all elements

of Ut and Φt can be updated independently.

Proof. At time t > 0, recall that F −t denotes all past data Ut′ and edge weight random

variables Φt′ for t′ < t. Denote by p(φi jt | F
−

t ) the prior distribution for φi jt given the past

information till time t − 1. Since φ·,·,t measures the extent of information being shared

between a pair of suspects at time t, the random variable φi jt for each pair {ři, ř j} ∈ Ωt ×Ωt

at time t can be estimated independently. Thus, the prior density of Φt can be written as

p(Φt | F
−

t ) =
∏

{ři, ř j}∈Ωt×Ωt

p(φi jt | F
−

t ). (6.11)

With the first-order Markovianity (Statement 6.9) and the output independence as-

sumptions (Statement 6.10), the matrix Ut and the posterior of Φt decompose as follow

p(Ut | F
−

t ) =
∏

{ři, ř j}∈Ωt×Ωt

p(ui jt | F
−

t ), (6.12)

p(Φt |Ut,F
−

t ) =
∏

{ři, ř j}∈Ωt×Ωt

p(φi jt | ui jt,F
−

t ). (6.13)

For each pair {ři, ř j}, on observing a vector ui jt of data from the m communication

channels, φi jt can be updated as follows due to Statement 6.8,

p(φi jt | ui jt,F
−

t ) ∝ p(φi jt | F
−

t )p(ui jt | φi jt,F
−

t )

=

m∏
k=1

p(φi jt | F
−

t )p(si jkt | φi jt,F
−

t ). (6.14)
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Thus the one-step-ahead forecasts can be written as

p(ui jt | F
−

t ) =

∫
φi jt

p(ui jt | φi jt,F
−

t )p(φi jt | F
−

t ) dφi jt

=

m∏
k=1

∫
φi jt

p(si jkt | φi jt,F
−

t )p(φi jt | F
−

t ) dφi jt (6.15)

Now the marginal likelihood of the 2-time-slice DBN model described by the graph

G can be decomposed into a product of the one-step-ahead forecasts as follows:

p(U1, . . . ,Ut | F
−

1 ) =

t∏
s=1

p(Us | F
−
s )

=

t∏
s=1

∏
{ři, ř j}∈Ωs×Ωs

m∏
k=1

∫
φi js

p(si jks | φi js,F
−
s )p(φi js | F

−
s ) dφi js (6.16)

or equivalently as a sum of the log marginal likelihoods as

log
(
p(U1, . . . ,Ut | F

−
1 )

)
=

t∑
s=1

∑
{ři, ř j}∈Ωs×Ωs

m∑
k=1

log p(si jks | F
−
s ) (6.17)

where F −1 reflects the prior information used to set up the model at time t0.

�

We now describe the Gamma-Poisson steady model below.

Initialisation: For each pair {ři, ř j} ∈ Ωt ×Ωt, set the prior φi jt0 as follows

φi jt0 ∼ Gamma(αi jt0 , βi jt0) (6.18)

where t0 is the first time step in our time-series. The parameters αi jt0 and βi jt0 are determined

by existing case knowledge. For example, if ei j ∈ E(Nt0) exists only due to a social relation

αi jt0 and βi jt0 may be set such that the mean and variance of φi jt0 are both relatively low.

Whereas if ωi and ω j have a previous joint conviction then these parameters can be set such

that the φi jt0 has a high mean and lower variance.

Posterior at time t − 1: Let the posterior of φi j,t−1 after observing ui j,t−1 and F −t−1 be given

by

φi j,t−1 | ui j,t−1,F
−

t−1 ∼ Gamma(αi j,t−1, βi j,t−1) (6.19)

Prior at time t: Under the steady model, we use a discount factor δi jt ∈ (0, 1] to evolve the
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posterior at time t − 1 to the prior at time t as follows

φi jt | F
−

t ∼ Gamma(δi jtαi j,t−1, δi jtβi j,t−1). (6.20)

The discount factor δi jt represents the decay of information from time t − 1 to time t. The

mean and variance of the prior are

E[φi jt | F
−

t ] =
δi jtαi j,t−1

δi jtβi j,t−1

=
αi j,t−1

βi j,t−1

= E[φi j,t−1 | ui j,t−1,F
−

t−1] (6.21)

var[φi jt | F
−

t ] =
δi jtαi j,t−1

(δi jtβi j,t−1)2

=
αi j,t−1

δi jt(βi j,t−1)2

≥
αi j,t−1

β2
i j,t−1

= var[φi j,t−1 | ui j,t−1,F
−

t−1] (6.22)

Thus, the mean remains constant in the posterior to prior transformation and hence, this is

known as a “steady” or stable evolution. The variance, however, either remains the same

(when δi jt = 1) or increases (when 0 < δi jt < 1). Thus, when the value of δi jt is close to one,

then our prior for φi jt at time t is approximately identical to the posterior for φi j,t−1. A lower

value of δi jt indicates a reduced confidence in the posterior at the previous time step as the

variance increases. This is also associated with a decay of information from the previous

time step depending on how much the situation is likely to have evolved since then.

Data generation at time t: The observations from the different communication channels

can be modelled independently (Statement 6.8). We assume that the observations from the

communication channels are generated from a Poisson distribution;

si jkt | φi jt,F
−

t ∼ Poi(ξkφi jt), k = 1, . . . ,m. (6.23)

Note that this implies that the sample space of si jkt is the set of natural numbers including

zero, N0 (see Appendix A).

Posterior at time t: The posterior when the observation vector ui jt has at least one non-zero
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element is given by

p(φi jt | ui jt,F
−

t ) ∝
m∏

k=1

p(si jkt | φi jt,F
−

t ) p(φi jt | F
−

t )

=

m∏
k=1

(
φ

si jkt
i jt exp

(
−ξkφi jt

)) (
φ
δi jtαi j,t−1−1
i jt exp

(
−δi jtβi j,t−1φi jt

))
= φ

∑
k si jkt+δi jtαi j,t−1−1

i jt exp
(
−(

∑
k ξk + δi jtβi j,t−1)φi jt

)
φi jt | ui jt,F

−
t ∼ Gamma(αi jt, βi jt) (6.24)

where αi jt = δi jtαi j,t−1 +
∑

k si jkt and βi jt = δi jtβi j,t−1 +
∑

k ξk. Observe here that for the same

value of
∑

k si jkt, a lower overall efficiency of the observations given by
∑

k ξk results in a

higher mean and larger variance of φi jt compared to when the overall efficiency is higher.

This is what we would expect as a lower efficiency indicates that the data we observe has

some loss of information and hence, the actual extent of direct information exchanged (φi jt)

is higher than the observed data indicates. The larger variance indicates the associated

increase in uncertainty.

One-step-ahead forecast: The one-step-ahead forecast of the data from channel k can be

obtained in closed form as

p(si jk,t+1 | F
−

t+1) =

∫
φi j,t+1

p(si jk,t+1 | φi j,t+1,F
−

t+1) p(φi j,t+1 | F
−

t+1) dφi j,t+1

=

∫
φi j,t+1

{ (ξkφi j,t+1)si jk,t+1 exp
(
−ξkφi j,t+1

)
si jk,t+1!

}
×

{ (δi j,t+1βi jt)δi j,t+1αi jtφ
δi j,t+1αi jt−1
i j,t+1 exp

(
−δi j,t+1βi jtφi j,t+1

)
Γ(δi j,t+1αi jt)

}
dφi j,t+1

=
ξ

si jk,t+1

k (δi j,t+1βi jt)δi j,t+1αi jt

si jk,t+1!Γ(δi j,t+1αi jt)
×∫

φi j,t+1

{
φ

si jk,t+1+δi j,t+1αi jt−1
i j,t+1 exp

(
−(ξk + δi j,t+1βi jt)φi j,t+1

)}
dφi j,t+1

=
Γ(si jk,t+1 + δi j,t+1αi jt) (δi j,t+1βi jt)δi j,t+1αi jt ξ

si jk,t+1

k

Γ(δi j,t+1αi jt) (ξk + δi j,t+1βi jt)(δi j,t+1αi jt+si jk,t+1) si jk,t+1!

=

(
si jk,t+1 + δi j,t+1αi jt − 1

si jk,t+1

) (δi j,t+1βi jt)δi j,t+1αi jt ξ
si jk,t+1

k

(ξk + δi j,t+1βi jt)(δi j,t+1αi jt+si jk,t+1) (6.25)

where
(
·

·

)
denotes the binomial coefficient.

In settings such as policing, it is essential to differentiate between the following

cases:
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1.
∑

k si jkt = 0 because ři and ř j were monitored but did not communicate in any way

during time t;

2.
∑

k si jkt = 0 because ři and ř j were not closely monitored during time t.

In the first case, the posterior update is carried out as described above. In this case,

we would expect the mean and variance to decrease. The posterior update results in this as

shown below.

E[φi jt | ui jt,F
−

t ] =
δi jtαi j,t−1 +

∑
k si jkt

δi jtβi j,t−1 +
∑

k ξk

=
δi jtαi j,t−1 + 0

δi jtβi j,t−1 +
∑

k ξk

<
δi jtαi j,t−1

δi jtβi j,t−1

= E[φi jt | F
−

t ] (6.26)

var[φi jt | ui jt,F
−

t ] =
δi jtαi j,t−1 +

∑
k si jkt

(δi jtβi j,t−1 +
∑

k ξk)2

=
δi jtαi j,t−1 + 0

(δi jtβi j,t−1 +
∑

k ξk)2

<
δi jtαi j,t−1

(δi jtβi j,t−1)2

= var[φi jt | F
−

t ] (6.27)

as
∑

k ξk > 0.

In the second case, the prior at time t is set as the posterior at time t, i.e. a posterior

update using the data is not carried out. This ensures that when we haven’t actually observed

zero communications, the posterior mean at time t is the same as the posterior mean at time

t − 1 and the posterior variance increases from time t − 1 to t. In fact, in this case, the prior

mean at time t + 1 remains the same as the posterior mean at time t − 1. However, the

prior variance at time t + 1 is further diffused as the posterior distribution at time t − 1 is

discounted twice to obtain the prior distribution at time t + 1 as shown below:

E[φi j,t+1 | F
−

t+1] =
δi j,t+1δi j,tαi j,t−1

δi j,t+1δi jtβi j,t−1

=
αi j,t−1

βi j,t−1

= E[φi j,t−1 | ui j,t−1,F
−

t−1] (6.28)
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var[φi j,t+1 | F
−

t+1] =
δi j,t+1δi jtαi j,t−1

(δi j,t+1δi jtβi j,t−1)2

=
αi j,t−1

δi j,t+1δi jt(βi j,t−1)2

≥
αi j,t−1

β2
i j,t−1

= var[φi j,t−1 | ui j,t−1,F
−

t−1]. (6.29)

Observe that if no new information is observed through ui js, s ≥ t then the variance

of φi js, s ≥ t will continually keep increasing. To prevent this and to reflect that we expect

a baseline amount of information flow to continue between a pair of suspects ři and ř j

who share an edge between them – until we observe information indicating otherwise –

we can set the discount factor as δi jt = di j + (1 − di j) exp
(
−

∑
k si jk,t−1ξk

)
(Chen et al.,

2018). Here di j is the baseline discount factor for pair {ři, ř j}. This is particularly useful

if we expect to have large consecutive gaps of time when we do not expect to observe

good quality data on the pairs. When we observe very low levels of quality information

in the previous time, the discount factor is closer to 1 to limit the decay of the variance of

φi jt. When good quality information is observed, the discount factor will be closer to di j.

Notice that this setting allows us to set pair-specific discount factors if needed. However,

in practise using a common discount factor across different pairs seems to work well. In

the application presented in Section 6.7, we do not use a baseline discount factor and use a

common discount factor across pairs for simplicity.

The distribution of φi jt for a pair {ři, ř j} can hence be periodically updated over the

evolution of time t in closed form using the above recurrences across the network given the

sequential incoming observational data. Also, the dynamic nature of the open population is

easily incorporated in our model by introducing vertices, edges and priors for immigrants

(new entrants) and removing them for emigrants (leavers) at the appropriate time. To sum-

marise, Figure 6.5 gives an overview of the dynamic network model.

6.6 Integrating Decision Support System

In this section we illustrate how a collection of RVE models described in Section 6.3 and

the dynamic weighted network model described in Section 6.5 can be combined together

into an integrating decision support system (IDSS) for the criminal collaboration process.

French et al. (2009) defines a decision support system as a “computer-based system which

supports the decision making process, helping decision makers to form and explore the

implications of their judgements and hence to make a decision based upon understanding”.

An IDSS was then defined by Leonelli and Smith (2015) as a unifying and integrating
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Figure 6.5: Overview of the dynamic network model.

framework that combines component decision support systems – each supporting decision

making about a distinct aspect of a complex system – into a single entity.

We demonstrate how, with the appropriate conditional independence structure, we

can decompose a complex dynamic multivariate system into independent dynamic univari-

ate systems. With this, at each time t > 0, we can formally combine together the outputs of

the network Nt and the individual RVE models for each individual ř in the population Ωt

while estimating the parameters of the network and RVE models independently.

6.6.1 The Decoupling Methodology

In this section we describe the decoupling methodology previously exploited to develop

Multiregression Dynamic Models (MDMs) which were first introduced in Queen and Smith

(1993) and later used for numerous applications, for example Freeman and Smith (2011b),

Anacleto et al. (2013), Costa et al. (2015), Leonelli and Smith (2015), and Wilkerson and

Smith (2021). We demonstrate how this decoupling methodology directly applies to the

setting described in this chapter, thus enabling us to combine the dynamic network model

and the individual RVEs to obtain the criminal collaboration model. We describe this de-

coupling methodology below after first introducing some standard time-series notation.

Denote by Yt = {Yt(1),Yt(2), . . . ,Yt(n)} a multivariate time-series composed of n

components at time t > 0. Let yt be the vector of observed values of all components of

Yt and yt(i) be the observed value of component Yt(i). Further, let yt = {y1, y2, . . . , yt},
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yt
i = {y1(i), y2(i), . . . , yt(i)} and yt

A = {y1(A), y2(A), . . . , yt(A)} where A ⊆ {1, 2, . . . , n}. De-

note the parameters associated with Yt by θθθt = {θt(1), θt(2), . . . , θt(n)} such that θt(i) is the

parameter vector associated with component Yt(i). If the conditional independence structure

of a dynamic model for Yt can be represented by a DAG (see Section 2.2.1) with vertices

representing the components of Yt, and the prior parameter vectors denoted by θθθ0 are set to

be mutually independent, then the following key results of Queen and Smith (1993) hold.

Proposition 6.11. For a dynamic model over a time series Yt = {Yt(1),Yt(2), . . . ,Yt(n)} such

that its conditional independence structure can be represented by a DAG whose vertices are

the components of Yt, the following conditional independencies hold

yi∈[n] θt(i) | yt (6.30)

θt(i) y yt
[n]\{i∪Pa(i)} | y

t
i, y

t
Pa(i) (6.31)

where [n] = {1, 2, . . . , n} and such that Pa(i) are the indices in [n] associated with the

parents of component Yt(i) in the DAG of the model.

The conditional independence in Statement 6.30 indicates that the parameter vec-

tors for the different components remain independent for all time given the present and

past observations, and the conditional independence in Statement 6.31 states that given the

present and past observations for component Yt(i) and its parent components in the DAG

of the model, the parameter vector for component Yt(i) is independent of the rest of the

observed data (Queen & Smith, 1993; Leonelli, 2015). These conditional independencies

ensure that the parameters associated with each component of the dynamic multivariate

model can be updated independently at each time t and remain independent thereafter at

each future time t′ > t. With the specified DAG representation of the components of Yt,

an MDM decomposes Yt such that each of its components is a univariate dynamic linear

model (DLM) (Harrison & Stevens, 1976; M. West & Harrison, 1997).

Theorem 2 of Queen and Smith (1993) proved the validity of Statements 6.30 and

6.31 for an MDM. However, we note here that this proof does not rely on each of the compo-

nents being decomposed into univariate DLMs. In fact, the proof is an induction that simply

relies on the prior parameter vectors θθθ0 being mutually independent, and on an application

of the d-separation theorem (see Section 2.3) on the DAG representation of the components

of Yt. The key idea here is linking the components of Yt through their observations directly

rather than through their parameter vectors θθθt within the DAG structure which enables us to

preserve modularity of the time-series modelling of Yt through all times t > 0.

The results given in Proposition 6.11 allow us to write the one-step-ahead forecast
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distribution of Yt as follows

p(yt | y
t−1) =

∏
i∈[n]

∫
θt(i)

f (yt(i) | yt
Pa(i), y

t−1
i , θt(i)) p(θt(i) | yt−1

i∪Pa(i)) dθt(i), (6.32)

which simplifies the joint forecast into a product of the individual forecasts for each com-

ponent.

Example 6.12. Consider a time series Yt = {Yt(1),Yt(2),Yt(3),Yt(4)} with four components

for t > 0. Suppose we model this time-series with an MDM and that the conditional inde-

pendence structure associated with this model is given by the DAG in Figure 6.6. Then the

time-series Yt(i) associated with ith component is modelled as a univariate DLM. Further,

the one-step-ahead forecast is given by

p(yt | y
t−1) =

∫
θt(1)

f (yt(1) | yt−1
1 , θt(1)) p(θt(1) | yt−1

1 ) dθt(1)×∑
i∈{2,3}

∫
θt(i)

f (yt(i) | yt
i−1yt−1

i , θt(i)) p(θt(i) | yt−1
{i,i−1}) dθt(i)×∫

θt(4)
f (yt(4) | yt

{2,3}y
t−1
4 , θt(4)) p(θt(4) | yt−1

{4,2,3}) dθt(4). (6.33)

Figure 6.6: The DAG associated with the MDM in Example 6.12.

Leonelli (2015) and Leonelli and Smith (2015) describe in great detail, within the

context of MDMs, how the modularity offered by the above decoupling methodology sat-

isfy the necessary likelihood separation and independence conditions outlined therein for a

distributed integrating decision support system (IDSS). Say that there is structural consen-

sus (Leonelli, 2015; Leonelli & Smith, 2015) among the decision makers, users and other

relevant stakeholders when they agree on the set of variables or components of Yt together

with a set of dependence statements about its components. Thus the structural consensus

defines a class of models. Suppose now that a model satisfying the independence properties

in Proposition 6.11 belongs to the structural consensus class of a particular process, and

further suppose that a panel of experts G j oversees the modelling of component set Yt(B j)
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where B j ⊂ [n], j = 1, 2, . . . ,m and B j ∩ Bk = ∅ for j , k. Then the one-step-ahead

forecasts for Yt given in Equation 6.32 can be written as follows (Leonelli, 2015)

p(yt | y
t−1) =

∏
j∈[m]

∫
θt(B j)

f (yt(B j) | yt
Pa(B j), y

t−1
B j
, θt(B j)) p(θt(B j) | yt−1

B j∪Pa(B j)) dθt(B j). (6.34)

Hence, the decoupling methodology described here enables us to formally decouple

the dynamic network models Nt and the individual RVE models of each ř ∈ Ωt for each

time t > 0 and then recombine them within a modular integrating decision support system.

In fact, this decoupling methodology, although well-demonstrated within MDMs, has not

been exploited out of this setting until now. Recall that the properties of this methodology

rely only on the initial independencies set through the prior parameters and on the DAG

structure linking the components of the time-series. Hence, they can be easily transferred

to suitable non-MDM settings.

6.6.2 IDSS of the Criminal Collaboration Model

We now describe how the above decoupling methodology can be applied to obtain our

criminal collaboration model. Recall from Section 6.3 that in the RVE for a single suspect

ř, Yt refers to the data relating to the activities of ř at time t > 0. To generalise this

notation to a population of suspects Ωt, let Yit denote the data relating to the activities of

suspect ři ∈ Ωt at time t > 0. As defined in Section 6.5.2, let ui jt be the m-dimensional

vector containing summary measures of the information shared between individuals ři and

ř j through the m communication channels at time t > 0.

The dynamic network modelNt for population Ωt can now be coupled with the |Ωt|

RVE models – one for each ř ∈ Ωt – through a DAG which contains edges from Yit and

Y jt to ui jt for each pair {ři, ř j} ∈ Ωt × Ωt, and no other edges. Recall that ui jt = u jit by

design and so we explicitly model only one of these within the DAG. For instance, consider

Ωt = {ři, ř j, řk}. The DAG combining the individual RVEs for ři, ř j and řk, and the

dynamic network model Nt at time t > 0 is given in Figure 6.7.

Figure 6.7: The DAG associated with the criminal collaboration model.
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Further, since ui jt contains all the observed information about the pairwise com-

munications needed to estimate the edge weight modelled by random variable φi jt in the

network model, and typically ui jt ⊂ Yit and ui jt ⊂ Y jt, the estimation of φi jt can be per-

formed independently of Yit and Y jt when ui jt is given. Finally, by adapting Statement 6.10

as follows

ui jt y (Φt,Ut, {Yis,Y js}s≤t,F
−

t ) | φi jt, (6.35)

the one-step-ahead forecasts of ui jt as a product of the one-step-ahead forecasts of its si jkt

components remain independent of Yit and Y jt when φi jt is given. This then allows estima-

tion and forecasts for the RVE models and the networks models to be performed completely

independently and then combined together to form the joint model.

Note, however, that the conditional independence in Statement 6.35 is a simplifying

assumption. Within our application, it enables us to retain closed form recurrences and not

make additional distributional assumptions. It is by no means a necessary assumption. We

could instead incorporate the time-series corresponding to Yit and Y jt within the steady

model for each pair {ři, ř j} ∈ Ωt × Ωt in the dynamic network model or use a different

model instead. Similarly, other improvements can be introduced if necessary. For instance,

if we believed that the RVE model of a particular suspect ři was influenced by that of its

neighbour ř j (represented by an edge from Y jt to Yit in the DAG), then this can be easily

incorporated too, for example by extracting the necessary signal from Y jt with a filter (as

described in the surface level of the RVE in Section 6.3) in the RVE model for Yit or through

addition of Y jt as a regressor in a DLM for Yit.

Through the combination of our bespoke dynamic network model and the existing

RVE methodologies into an IDSS,

i) we have a formal stochastic model for modelling the threat posed by individuals –

who form the vertices of our network model – informed by a Bayesian hierarchical

model linking states, tasks and data;

ii) by defining our network model over an open population, our IDSS takes into account

the periodic policing decisions of prioritising and de-prioritising cases;

iii) ties between individuals are modelled through the extent of information directly

shared between them using observable data and prior information – these form the

edges of our network model;

iv) we utilise a Bayesian paradigm to combine individual RVE processes and the multi-

variate dynamic network model;

v) we can define holistic threat scores to guide policing authorities in predicting and
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disrupting real-time criminal activity, as described in Section 6.6.3.

6.6.3 Cell-Level Threat Scores

We now utilise the independent estimation of parameters across the criminal collaboration

IDSS described above to arrive at a measure of imminence of threat posed by a known

or suspected group of collaborating individuals within Ωt. These groups are often called

cells. There are various definitions of what constitutes a criminal or terrorist cell. Shapiro

(2005) states that “a cell is best understood as an individual or group of individuals that take

consequential actions”. For our purposes we present a simple definition of a cell within

our model as described below. A cell C ⊂ Ωt is defined as a group of individuals who

induce a connected subgraph in the network model Nt at time t > 0. The connectivity

of the subgraph is to ensure that each individual in C is in contact with at least one other

individual in C, failing which a joint effort would not be possible. The composition of C is

typically determined by the investigators, based on their expert judgement, such that C is

potentially an organisational unit for potential attack.

In addition to the dynamic network model which measures the flow of information

between pairs of individuals within the population, to analyse the threat posed by a cell

we also need to consider the threat posed by each member of the cell. The RVE model

enables us to estimate the progression of an individual towards a particular attack. Hence,

we combine the dynamic network model with the RVE models of the individuals forming a

cell to measure the imminence of threat posed by the cell as a whole. This is equivalent to

using the criminal collaboration IDSS for the stated purpose.

We first define the following notation

ΘΘΘt = {θθθit : ři ∈ Ωt} ∈ {0, 1}R×|Ωt |

ZZZt = {ZZZit : ři ∈ Ωt} ∈ R
R×|Ωt |

WWW t = {Wit : ři ∈ Ωt} ∈ {w0,w1, . . . ,wn}
|Ωt |

where θθθit,ZZZit and Wit are defined as in Section 6.3 for the RVE of ři ∈ Ωt.

The resources available to the authorities are typically limited and so it is critical

that they are able to identify which cells pose the most imminent threat. To enable quick

real-time support, we need threat scores that can be readily calculated from the available

information and easily interpreted by the authorities. Based on this requirement, we present

potential cell-level threat measures below which we later combine to arrive at informative

threat scores.

(1) Collective progress: Similar to the individual RVE model described in Section
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6.3, we can construct an RVE model for modelling the progress of the cell C, as a separate

entity, towards a particular criminal attack. Let WC
t indicate the latent random variable

indicating the state occupied by the cell C at time t > 0, where WC
t ∈ {w0,w1, . . . ,wn}.

As in the individual RVE, the data at the surface level YC
t = ∪ř∈CYř

t is passed through a

filter function to obtain ZC
t which in turn informs the cell’s engagement with the tasks θθθC

t

associated with the criminal attack. Denote by πππC
t = {πC

t0, π
C
t1, . . . , π

C
tn} the probability vector

associated with the latent random variable WC
t , such that πC

ti indicates the probability that

the cell is in state wi at time t > 0. These can be obtained through the recurrences described

in Section 6.3.1.

However, within a collaborative unit such as a cell, there will be some tasks that

need only be done by a subset of the members of the cell; for example figuring out the

logistics or developing certain skills. Thus, the filtered data ZC
t obtained from the collective

data on the cell YC
t must be set against these requirements to indicate whether the tasks are

being sufficiently completed. Let TTTC be the subset of the state space of WC
t that indicates the

set of states considered to be most dangerous by the authorities. A measure of preparedness

of the cell can be obtained as

m1 =
∑

wC
i ∈TTT

C

πC
ti . (6.36)

(2) Individual threat: Recall that the individual RVE represents the progress made

by an individual on an attack they plan to enact by themselves. As discussed under the

collective threat measure above, within a cell, not all tasks need to be performed by each

and every member of the cell. Hence, if we consider the RVE of any individual member of

the cell, for their progression towards the same criminal attack modelled for the entire cell

above, they are likely to be further behind in their individual progress towards the attack

than the cell as a whole. Thus, we would be underestimating the threat posed by each

individual if we consider their individual RVEs for the same attack as the cell. Ideally we

would be able to identify, for each member of C, the role that they play within the cell. Each

role can then have an associated set of tasks which can be used within that individual’s RVE

model to monitor their progression towards the joint attack. However, this is not always

possible as it requires detailed understanding of the cell’s dynamics – intelligence which is

extremely sensitive and difficult to gather (Duijn et al., 2014).

One option then is to evaluate the threat status of the individuals in C based on their

progress on the tasks θθθ∗t ⊂ θθθ
C
t that most of the members of C are expected to have the skills

to do. The states for the individual RVEs can be adapted in line with this to obtain the

product of measures of individual threat for each member of C as
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m2 =
∏
ř∈C

{∑
wi∈TTT

πř
ti

}
(6.37)

where TTT denotes the set of most dangerous threat states in the individual RVEs.

(3) Latent collaboration: In any cell, we may not expect each pair to be commu-

nicating with each other but for any successful collaborative project, a certain amount of

connectivity is expected between each communicating pair and overall in the cell. Hence

we set up two different measures of cohesion. For each communicating pair {ři, ř j} in C,

we measure pairwise cohesion as

m∗3 = p(φi jt > x1) (6.38)

where x1 is the lower limit of how much we expect each pair to be communicating for the

criminal attack to be enacted. A cell-level measure of pairwise cohesion can be obtained as

m3 =
∏

{ři, ř j}∈Ωt×Ωt

p(φi jt > x1). (6.39)

Similarly, another cell-level cohesion measure can be obtained from the subnetwork

density of C

m4 =
k(
n
2

) (6.40)

where k = |E(Ct)| represents the number of ties shared by the members of cell C in the

network model Nt at time t > 0, n = |Ct| is the size of the cell C and thus
(
n
2

)
is the number

of possible ties in C.

(4) Size of the cell: While collaborative efforts benefit from sharing resources and

skills, a very large cell can be unwieldy and increases the risk of exposure of the cell. For

a given type of criminal attack, the authorities are likely to be able to estimate an ideal cell

size p∗ either from expert knowledge and intuition or from the literature and reported cases

of a similar nature. A simple measure of cell integrity is obtained as

m5 = sech
(

p − p∗

p∗

)
, (6.41)

where sech(·) is the hyperbolic secant function.

Cell threat scores: We can now combine the measures mi for i = {1, 2, . . . , 5} to obtain
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a series of cell-level summary measures called here as the cell threat scores. We caution

against the use of any single summary measure as the sole determinant of the threat posed

by a cell. Instead, these scores are meant to signal when the activities of the cell need to be

monitored more closely.

For a given type of criminal attack, a cell is most threatening when m1 = m2 = m3 =

m4 = m5 = 1. We can obtain an ordered set of cell threat scores {ϕC(i)}, i ∈ {0, .., 4} as

ϕC(i) =

5−i∏
j=1

m′j (6.42)

{m′j} j=1,..,5 = σ({mi}i=1,..5)

where σ is a permutation of elements such that for i = 1, . . . 4,

0 ≤ m′i+1 ≤ m′i ≤ 1

and hence for i = 0, . . . 3,

0 ≤ ϕC(i) ≤ ϕC(i + 1) ≤ 1.

This ordered set is used to check whether a single or few measures’ values are overly af-

fecting the base ϕC(0) score. Each of these scores has the property that a higher value of

ϕC(i) indicates a greater imminence and danger of the threat posed by the cell C. Thus

we have combined several key factors to obtain transparent threat scores for a cell which

can guide the authorities to prioritise and de-prioritise cases. These threat scores can be

plotted against time to analyse how the threat posed by the cell develops dynamically. Note

that the cell-level threat measures used here to define the cell threat scores can be easily

adapted to incorporate other elements that may be considered to be essential by the policing

authorities, see e.g. J. Xu et al. (2004) and Yang et al. (2006).

6.7 Review of a Simulated Example

In this section, we review a demonstration of the use of our criminal collaboration model as

given in Bunnin et al. (2020). Due to the nature of policing, the required domain data is very

sensitive and requires security clearance to acquire. Instead Example 6.9 was developed by

Bunnin with simulated data to illustrate how the criminal collaboration model may work

in practice. This data is simulated from some time t1 which is equivalent to time t + 1 in

Example 6.9, and is informed by meetings with relevant policing authorities and publicly

available data on various real-world criminal cases.
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6.7.1 Individual RVEs

Recall that at time t1 the individuals being monitored by the local policing authority are

given by Ωt1 = {ř1,ř2,ř3,ř4}. Let the sample space of the latent random variable Wit in

the RVE for suspect ři and time t ≥ t1 be given by the states {“Active convert”, “Training”,

“Preparing”, “Mobilised”}. Here, we shall refer to these states as threat states. Recall that

the RDCEG of the RVE also includes a “Neutral” state that is not explicitly depicted.

Using the criminal profiles of the suspects, and based on their past and current

activities, the prior probabilities of the state Wi,t1 occupied by these individuals at time t1
are shown in the RDCEG graphs of the RVE models in Figure 6.8. Suspect ř4 is believed

to have received training by pro-terrorist groups and hence is placed in the “Training” state

whereas the others have only stated their views and intentions but there is no indication

otherwise of them training or preparing, hence they are placed in the “Active convert” state.

(a) RDCEG graph for ř1, ř2 and ř3. (b) RDCEG graph for ř4.

Figure 6.8: In both figures, the vertex labels include the prior state probability and edge
labels denote the conditional transition probability at time t1.

As these four individuals are in Ωt1 , their activities and communications are moni-

tored by the authorities. It is assumed for simplicity that over the ten weeks that follow, the

composition of Ωt1 remains unchanged, i.e. none of the existing suspects leave and no new

suspects enter this subpopulation. Over the following weeks, it is observed that suspect ř1’s

internet activities include repeated visits to websites of car dealers and car rentals, as well

as knife retailers. Their bank account also shows a large influx of funds from an overseas

bank account. The internet activity of suspect ř2 includes visits to illegal bomb making

websites, and repeated visits to and comments on extremist radical forums. Suspect ř4’s

internet activity includes searches for online maps and blueprints of government buildings

and densely populated commercial areas of the town. Suspect ř4 is also observed to have
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physically visited potential bomb testing sites. Figure 6.9 shows the activity data for each

of the four suspects observed over a period of ten weeks. This data is used in the individual

RVE models for the suspects as described in Section 6.3. Figure 6.10 shows the evolution of

the posterior probabilities for the latent threat state variable Wi,tk for suspect ři, i = 1, 2, 3, 4

and time 1 ≤ k ≤ 10.

(a) Activity data for ř1 (b) Activity data for ř2

(c) Activity data for ř3 (d) Activity data for ř4

Figure 6.9: Activity data for the four suspects over the observed time period of ten weeks.

6.7.2 Network Model

Not only are the activities of these suspects being observed, but their communications and

interactions with each other are also being recorded over the ten week period. For sim-

plicity, it is assumed here that the pairwise communications data are received from only

one communication channel: mobile phone calls. The phone call data between a pair of

suspects is summarised as the sum of the phone calls in hours between the pair observed

over the week. Since we have only one communication channel here, we set its efficiency

parameter as 1. Table 6.1 shows the summary data of the phone calls between each pair in

our subpopulation over the ten week period. This data shows that during weeks t2 and t3,

the pair {ř1,ř2} talk over their mobile phones at a consistent rate. In week t3, ř1 and ř4

are observed to converse with each other over a phone call. Further, in week t5, we observe

that the pairs {ř1,ř3} and {ř2,ř4} begin sharing phone conversations. These phone calls
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(a) Posterior probabilities for ř1 (b) Posterior probabilities for ř2

(c) Posterior probabilities for ř3 (d) Posterior probabilities for ř4

Figure 6.10: Posterior threat state probabilities from the RVE models of the suspects over
the ten weeks.

lead us to create edges e1,3 and e2,4 at time t5 in the network to reflect these new ties. By

week t6, all four individuals share pairwise communications with each other. With this in-

formation, we can create edge e3,4 in the network at time t6 which results in the graph of the

network becoming a complete graph. The total time of these phone calls are also observed

to increase from weeks t7 to t10.

We can now use the Gamma-Poisson steady model described in Section 6.5.3 to

model the evolution of the collaborative links among the four suspects. Recall that we

denote this by φi, j,tk for i, j = 1, 2, 3, 4, i , j and 1 ≤ k ≤ 10. The prior distributions

for φi, j,tk are set by specifying the α and β parameters of the prior Gamma distributions.

For instance, based on the prior knowledge the policing authority has on the suspects, they

believe that the extent of information shared between ř1 and ř2, and between ř2 and ř3

is relatively low with some uncertainty at time t1. Based on this information, the α and β

parameters are set as 0.7 and 1.41 respectively for φ1,2,t1 and φ2,3,t1 . The setting of the α

and β parameters for φi, j,tk for all pairs over the ten week period are shown in Table 6.2, and

178



s1,2 s1,3 s1,4 s2,3 s2,4 s3,4

t1 0 0 0 0 0 0
t2 3 0 0 1 0 0
t3 5 0 2 0 0 0
t4 5 0 5 0 0 0
t5 5 2 5 0 1 0
t6 5 6 6 5 6 1
t7 7 6 7 6 7 7
t8 6 6 8 4 8 8
t9 7 7 9 7 9 9
t10 7 8 11 8 10 10

Table 6.1: Simulated weekly sum of communication duration data. All the zeros in this
table indicate that the pair did not communicate through mobile phone call in that week.

the evolution of φi, j,tk is shown through the posterior densities in Figure 6.11. The discount

factor δi, j,tk is set to 0.7 across all pairs and for the entire ten week duration.

φ1,2 φ1,3 φ1,4 φ2,3 φ2,4 φ3,4

α β α β α β α β α β α β

t1 prior 0.70 1.41 0.70 1.41
t1 post 0.70 2.41 0.70 2.41
t2 prior 0.50 1.70 0.50 1.70
t2 post 3.50 2.70 1.50 2.70
t3 prior 2.46 1.90 1.05 1.90
t3 post 7.46 2.90 2 1 1.05 2.90
t4 prior 5.26 2.04 1.41 0.70 0.74 2.04
t4 post 10.26 3.04 6.41 1.70 0.74 3.04
t5 prior 7.23 2.15 4.52 1.20 0.52 2.15
t5 post 12.23 3.15 2 1 9.52 2.20 0.52 3.15 1 1
t6 prior 8.62 2.22 1.41 0.70 6.71 1.55 0.37 2.22 0.70 0.70
t6 post 13.62 3.22 7.41 1.70 12.71 2.55 5.37 3.22 6.70 1.70 1 1
t7 prior 9.60 2.27 5.22 1.20 8.95 1.80 3.78 2.27 4.72 1.20 0.70 0.70
t7 post 16.60 3.27 11.22 2.20 15.95 2.80 9.78 3.27 11.72 2.20 7.70 1.70
t8 prior 11.70 2.30 7.91 1.55 11.24 1.97 6.89 2.30 8.26 1.55 5.43 1.20
t8 post 17.70 3.30 13.91 2.55 19.24 2.97 10.89 3.30 16.26 2.55 13.43 2.20
t9 prior 12.47 2.33 9.80 1.80 13.56 2.09 7.68 2.33 11.46 1.80 9.46 1.55
t9 post 19.47 3.33 16.80 2.80 22.56 3.09 14.68 3.33 20.46 2.80 18.46 2.55
t10 prior 13.72 2.34 11.84 1.97 15.90 2.18 10.34 2.34 14.42 1.97 13.01 1.80
t10 post 20.72 3.34 19.84 2.97 26.90 3.18 18.34 3.34 24.42 2.97 23.01 2.80

Table 6.2: Evolution of the prior and posterior parameters for φi, j,tk during the ten weeks
from t1 to t10.
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(a) Posterior density at t3 (b) Posterior density at t4

(c) Posterior density at t5 (d) Posterior density at t6

(e) Posterior density at t7 (f) Posterior density at t8

(g) Posterior density at t9 (h) Posterior density at t10

Figure 6.11: Evolution of φi, j,tk from time t3 to t10 represented through their posterior den-
sities.
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6.7.3 Cell-Level RVE Model and Threat Scores

Next we consider the threat posed by the suspects {ř1,ř2,ř3,ř4} under the assumption

that they might be working collaboratively as a criminal cell. With the criminal collabo-

ration model – formed by combining together the individual RVEs and the network model

described above – the cell-level threat measures mi for i = 2, 3, 4, 5 are calculated as de-

scribed in Section 6.6.3. Further, as discussed in Section 6.6.3 a cell-level RVE model is

constructed for this cell where the task set and observation data are given by the union of

the task sets and observation data for the individual RVEs of the cell’s members. The prior

threat state probabilities for the cell-level RDCEG is taken as the prior threat state probabil-

ities of the suspect within the cell with the highest prior threat, i.e. ř4. The task intensities

for the cell-level RVE are based on the observational data of all the individuals in the cell.

Figure 6.12 shows the evolution of the state probabilities in the RDCEG through time. As

can be seen from this figure, the posterior probability of the cell being in the “Preparing”

state increases from time t5 as the communications within the cell and the overall activities

of the cell increase. Thereafter around time t9, the posterior probability of the cell being in

the “Mobilised” state increases sharply.

The numeric cell-level threat measures m1 to m5 and the combined threat scores ϕC

are shown in Table 6.3. If the policing authority choose to signal a warning when ϕC(·)

reaches a certain threshold, say 0.15, then we can see that for ϕC(0) this is not reached till

time t7 whereas for ϕC(2) this is reached by time t3. In practise, these measures and the

chosen thresholds would need to be calibrated using domain experience and judgement.

Figure 6.12: Posterior threat state probabilities from the cell-level RVE model over the ten
weeks.

To summarise, this simple worked example demonstrates how observed activity

data and communications data obtained on monitored suspects when combined with prior
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Prior t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

m1 0.15 0.21 0.26 0.32 0.45 0.71 0.96 0.99 1.00 1.00 1.00
m2 0.00 0.00 0.01 0.01 0.04 0.09 0.22 0.31 0.32 0.31 0.36
m3 0.14 0.05 0.14 0.04 0.03 0.00 0.30 1.00 1.00 1.00 1.00
m4 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
m5 0.83 0.83 0.83 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89

ϕC(0) 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.18 0.19 0.19 0.21
ϕC(1) 0.01 0.01 0.02 0.01 0.01 0.04 0.17 0.58 0.59 0.59 0.59
ϕC(2) 0.08 0.12 0.14 0.19 0.27 0.42 0.57 0.88 0.88 0.89 0.89
ϕC(3) 0.55 0.55 0.55 0.59 0.59 0.63 0.86 0.99 1.00 1.00 1.00
ϕC(4) 0.83 0.83 0.83 0.89 0.89 0.89 0.96 1.00 1.00 1.00 1.00

Table 6.3: Cell-level threat measures obtained through the criminal collaboration model and
the cell-level RVE. The threat scores ϕC(i) are defined as described in Section 6.6.3.

distributions calibrated to the investigator’s knowledge can give real-time informative mea-

sures of the evolving threat posed by individuals acting in collaboration with others. The

criminal collaboration model revises its probability estimates of the extent of information

transfer within pairs of individuals as well as the latent threat state occupied by an indi-

vidual and the cell in line with the incoming data. In the scenario investigated here, with

synthetic data informed by real cases, our criminal collaboration model showed a marked

increase in threat levels driven by the increase in specific activity data and phone call dura-

tion. This can be seen in the increased probability of the individuals forming the cell being

in either the “Preparing” or “Mobilised” states by week t10, and correspondingly, the cell as

a whole appearing to move from state “Preparing” occupied since week t5 to “Mobilised”

by week t10. The cell threat scores reflect a similar trend, e.g. ϕC(2) increases from 0.27

during week t4 to 0.57 during week t6 and then reaching 0.88/0.89 for weeks t7 to t10.

6.8 Conclusion

In this chapter, we demonstrated how a special subclass of CT-DCEGs, called the RDCEG,

can be useful in modelling processes on an open population where the missingness mech-

anism is likely to be MNAR. We also reviewed how the RDCEG forms an integral part of

the three-level hierarchical RVE model presented in Bunnin and Smith (2019). We then

proposed a two part criminal collaboration model with a novel dynamic weighted network

model on one hand and the individual RVEs for each member of the extant monitored sub-

population on another. The novelty of the network model lies in modelling the weights

along its edges – which measure the collaborative link between pairs of individuals – using
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a steady model. With the steady model, we can not only take into account the temporal

evolution of this pairwise measure of information exchanged even during the time periods

where we may not observe any data by discounting our beliefs from the previous time pe-

riods, but also the recurrences are all in closed form. Further, we demonstrated how the

decoupling methodology of MDMs can be seamlessly transferred to our setting to combine

the two parts of our criminal collaboration model. Finally, we demonstrated how our crim-

inal collaboration IDSS can inform the creation of simple yet powerfully informative threat

scores that indicate the imminence of the threat posed by a potential criminal cell. The

methods used in this chapter are novel to the policing domain application and provide a

way of setting the literature on SNA methods applied to this domain within a more flexible

and statistically defensible framework for further exploration.

There are several avenues of research that can follow from the work presented in

this chapter. Below is a discussion on possible improvements to the model along with the

statistical challenges they present, and domain challenges which our model currently does

not address along with ideas of how we could begin to address them.

In our network, we create edges based on familial and kinship connections between

pairs of individuals as well as past and present evidence of them sharing information with

each other (see details in Section 6.5.2). Also recall that the edge weight φi jt along an edge

in our modelNt is a measure of the extent of information being shared directly between the

individuals ři and ř j at time t connected by the edge. This definition of the edge weight

then leads to the following conditional independence assumption:

y{ři, ř j}∈Ωt×Ωt φi jt | Ft− . (6.43)

Thus, pairwise communications data can be used to estimate the edge weight φi jt. For an

alternative interpretation of the edge weights as measures of the extent of criminal collabo-

ration between the individuals connected by the edge, the above conditional independence

statement does not hold. This is because if we define φi jt to represent the extent of crimi-

nal collaboration between ři and ř j, then this is clearly also affected by, for instance, the

extent of collaboration they both share with a common neighbour řk. In this case, informa-

tion from communications such as meetings, conference phone calls or other broadcasting

methods involving three or more individuals will be informative of the extent of criminal

collaboration between each of these pairs of individuals. This would additionally lead to

the violation of the output independence assumption described in Statement 6.10. Under

this independence structure, we would no longer be able to estimate φi jt for each pair ři and

ř j independently. One way to maintain some of the independence in the estimations while

respecting this structure is given by the decouple/recouple strategy originally introduced
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by Gruber and West (2016) and Zhao et al. (2016) for financial and economic multivariate

time series applications. The decoupling/recoupling strategy involves defining a coherent

multivariate dynamic model by coupling together sets of customised univariate dynamic

models (M. West, 2020). In fact, MDMs and our IDSS could be classed as using the de-

couple/recouple strategy although our decoupling methodology described in Section 6.6.1

allows the recoupling to be done in closed form. However, the decoupling/recoupling strat-

egy is useful even in cases where the recoupling cannot be done in closed form. Within

our application, if φi jt measures the extent of criminal collaboration, we could decouple to

independently model φ′i jt which measures the extent of direct information exchanged and

recouple these for all pairs {ři, ř j} ∈ Ωt ×Ωt to estimate φi jt in a way that respects the new

independence structure (i.e. where Statements 6.10 and 6.43 do not hold). However, this is

unlikely to be in closed form and MCMC methods will need to be applied. For applications

using this kind of decoupling/recoupling strategy see, for example, Gruber and West (2017)

and Chen et al. (2018). We then lose some amount of transparency in the model that we

had because of the closed form recurrences. As we have noted earlier, within the domain of

policing it is essential to maintain transparency and interpretability. So any gains achieved

by incorporating the estimation of criminal collaboration between individuals in our model

would have to weighed against the loss in transparency.

Sparrow (1991) points out that criminals may intentionally and successfully try

to hide their activities and communications. Due to this, we may see very low levels of

communication between certain individuals when, in fact, they are hiding or disguising

their actual much higher levels of communication. Sparrow (1991) describes these as “weak

ties”. This implies that some connections where the level of activity is low might be of vital

importance to the structural integrity of the network. Our criminal collaboration model is

designed such that weak signals, within the RVEs of the individuals, will still be picked up

with a well-designed filter function. Moreover, the model can be modified or overriden by

the authorities at any point manually by changing the parameters, or creating or deleting

ties as they see fit. The model works within a transparent Bayesian updating framework

with initial inputs in the form of prior distributions and thus, all results can be traced back

to the data and the quantitative assumptions.

However, certain links may be disguised well enough to be completely hidden from

the policing authorities. Our network model, in its current form, does not include predic-

tion of previously unknown links between individuals. Link prediction within SNA is a

very active field and is clearly very pertinent to criminal network modelling. The literature

contains several examples of predicting hidden links in criminal networks using existing

SNA and emerging machine learning methodologies; see for example Budur et al. (2015),

Berlusconi et al. (2016), Crandell and Korkmaz (2018), Lim, Abdullah, Jhanjhi, Khan, et al.
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(2019), and Lim, Abdullah, Jhanjhi, and Supramaniam (2019). Link prediction methods,

by design, make use of the network structure. Our model is not currently set up to use the

network structure as within our current setting, it was sufficient to account for the tempo-

ral evolutions. Link prediction could be explored within our dynamic network model and

would be particularly useful for the final task in the overarching Turing project of identify-

ing new potential criminal groups as described in Section 6.1.

The final task of identifying previously unknown criminal groups or in short, com-

munity detection is not trivial within this domain. It is also rather different than in other

social networks of a more benign nature; e.g. individuals in the network who have high

measures of centrality are not necessarily the principal characters within a criminal group

(Sparrow, 1991). It is essential to take into account the existing knowledge on the struc-

ture and dynamics of criminal networks along with the descriptions of the various roles of

different individuals when considering community detection in these settings. J. J. Xu and

Chen (2005), van Gennip et al. (2013), Ferrara et al. (2014), and D. Robinson and Scogings

(2018) present examples of methodologies of community detection in criminal networks

using SNA techniques. Bahulkar et al. (2018) is of notable mention as they perform edge

augmentation through link prediction to identify hidden edges within the criminal network

before using community detection methods. However, these methods do not take into ac-

count the criminality of the individuals in the network or the possible roles they play within

their criminal groups. By developing appropriate stochastic set functions (as have been

used in the literature, see for example Wang et al. (2013)) which can be used within our

IDSS, perhaps after performing edge augmentation through link prediction in our dynamic

network model, there is potential to develop a bespoke clustering algorithm to identify new

criminal groups within the network.

Finally, the generic architecture of an IDSS using the decoupling methodology

might be applicable to other domains where there is a requirement to integrate individ-

ual time-series with dynamic interactions among individuals, modelled by a network, who

collaborate to realise a shared objective. Examples of this include social processes within

politics, governments or communities where complex interacting individuals have shared

objectives.
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Chapter 7

Discussion

In Section 7.1 we summarise the main contributions of this thesis. In Section 7.2 we present

a short discussion on two ongoing projects which have not been covered in the previous

chapters. At the end of each research chapter we discussed, within the conclusion section,

the contributions of that chapter along with a number of possible research directions that

could follow thereon. In Section 7.3 we outline some additional research avenues.

7.1 Summary of the Contributions of this Thesis

This thesis presents the first documented systematic exploration of the non-stratified CEG

class. This class of CEGs is what strongly differentiates it from the alternative BN family.

Unlike BNs, non-stratified CEGs can not only explicitly represent context-specific condi-

tional independencies within its graph topology but can also accommodate processes with

asymmetric event spaces, typically arising due to structural zeros and structural missing

values. Chapter 4 focused on defining and constructing a non-stratified CEG, and also pre-

sented an application of the class on a public health intervention. The examples used to

illustrate the methods developed throughout this thesis all belong to the non-stratified class.

In Chapter 5 we then explored and developed the CT-DCEG model class – a new general

dynamic variant of CEGs that evolves in continuous time. In Chapter 6 we illustrated how

a dynamic variant of the CEG family can be used alongside other models, each modelling

a disparate component of an evolving complex system.

A more detailed description of the contributions is presented below:

• We demonstrated how CEGs – through their event tree construction – are an ideal

framework for accommodating the two main issues that give rise to asymmetric event

spaces structures, namely structural zeros and structural missing values.
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• We presented a general backward iterative algorithm along with an optimal stopping

criterion for transforming any staged tree, stratified or non-stratified, into a CEG.

• We formally proved that the mapping from a staged tree to a CEG is bijective, and

hence, the CEG retains all the information represented by its staged tree.

• Through the modelling of a public health intervention to reduce falls-related injuries

among the elderly, we demonstrated that the CEG is a superior model when compared

to the BN for modelling processes with significant structural asymmetries.

• We presented the new dynamic model class of CT-DCEGs which evolves in contin-

uous time and generalises the existing limited subclass of extended DCEGs. This

class can embed crucial temporal information about the evolution of the process by

explicitly modelling conditional holding time distributions for each event.

• We presented a model selection algorithm for a special subclass of the CT-DCEG

class and illustrated how it can be applied to a dynamic extension of the falls inter-

vention.

• With the bespoke semantics we developed for the CT-DCEG class, we presented a

dynamic probability propagation scheme for this class. This scheme utilises two other

developments presented in this thesis: 1) the extension CEG propagation algorithm

such that it can incorporate temporal evidence, and 2) the approximate semi-Markov

representation of any given CT-DCEG.

• We presented a special CT-DCEG model subclass called the RDCEG that conditions

on individuals not dropping out of the population, and presented a detailed discussion

on what it implies about the underlying missingness mechanism of the process.

• We developed a dynamic weighted network model with steady evolutions to model

the extent of information being shared among a network of suspected criminals.

• We demonstrated how multiple disparate models can be easily combined into a com-

plex multivariate dynamic IDSS, with the appropriate conditional independence as-

sumption, by leveraging a decoupling methodology previously used for the MDM

family of models.

• Finally, we presented a criminal collaboration IDSS that is obtained by combining

the dynamic network model with a collection of RVE models – one for each member

of the suspect pool – modelling an individual suspect’s progression to a criminal

activity. We illustrated how this IDSS can be used to create informative threat scores

that indicate the progression of a criminal group to an attack.
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7.2 Ongoing Work

7.2.1 Mixture Modelling Approach to Model Selection

As a CEG is completely defined by its underlying staged tree (see Theorem 4.9), model

selection in CEGs is equivalent to identifying the collection of stages in its underlying

event tree. Recall that thus far, the CEG literature has focused on identifying this collection

of stages by 1) using a greedy AHC algorithm and 2) finding a globally optimal partition

of the vertices with a dynamic programming approach. Even if we use the concept of

hyperstages to reduce the model search space, we find that both of these approaches are

not easily scalable. Additionally, while conjugacy of prior and posterior distributions of

parameters is desirable for its analytical solutions and for the interpretability it lends to

the hyperparameters, conjugate settings may either not be feasible or appropriate in certain

cases. This is particularly of interest for CEGs with explicit modelling of holding times

where the conditional holding time distributions may not have a conjugate prior (e.g. two-

parameter Weibull distribution with unknown shape and scale parameters).

In light of both these issues, a CEG model selection approach that is scalable and

does not rely on conjugate updating is useful. As part of a collaborative project with Dr

Silvia Liverani, we propose a Bayesian mixture modelling approach to identifying the col-

lection of stages within an event tree. Using the Stan programming language which is a

current state-of-the-art technology we illustrate that the mixture model can be easily fit

even when the conditional holding time distributions, and their priors are not conjugate.

We first briefly describe a finite mixture model before describing our proposed

model selection method. For an excellent exposition of finite mixture models see Frühwirth-

Schnatter (2006). Consider a population with K subgroups where each subgroup k is of

relative proportion `k, for k = 1, 2, . . . ,K. Hence,
∑K

k=1 `k = 1. Let `̀̀ = {`1, `2, . . . , `K}.

Suppose that the interest lies in modelling a random feature Y such that Y is heterogeneous

across the subgroups but homogeneous within each subgroup. Hence, each subgroup k can

be associated with a parameter θk for the distribution modelling Y; i.e. the distribution of Y

for subgroup k is given by p(Y = y | θk). Let θθθ = {θ1, θ2, . . . , θK}.

Denote by y = {y1, y2, . . . , yn} a random sample of feature Y recorded from this

population. Let an indicator variable zi = (z1
i , z

2
i , . . . , z

k
i ) denote the subgroup occupied by

an individual i who is associated with the observation yi. This gives us

zk
i =

1, if yi comes from mixture component k,

0, otherwise.

Let by z = {z1, z2, . . . , zn}. Assuming random sampling from the population, the probability
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that an individual belongs to subgroup i is given by the Categorical distribution Cat(`̀̀).

Typically, when we sample randomly from this population, we may not know which

subgroup the individual belongs to. This could happen because of several reasons such as

due to the way the data was collected or due to the subgroups being latent characteristics.

The marginal density of y here is given by the following mixture density

p(y) =

n∏
i=1

p(yi)

=

n∏
i=1

K∑
k=1

p(yi, zk
i )

=

n∏
i=1

K∑
k=1

p(zk
i = 1|̀`̀) p(yi | zk

i = 1, θk)

=

n∏
i=1

K∑
k=1

`k p(yi | θk). (7.1)

For finite mixture models with more than one component (i.e. K ≥ 2), the marginal

likelihood p(y |M ) for some model M is not available in closed form and must be numer-

ically approximated (Frühwirth-Schnatter, 2006).

We next consider how the CEG model selection problem can be cast as a mixture

modelling problem. Without loss of generality, consider a CEG with explicit modelling of

conditional holding times. As in Section 5.7, notice that we can split the model selection

process into two parts: 1) identifying the situation clusters, and 2) identifying the edge clus-

ters.

Identifying the situation clusters
Consider an event tree T with n situations each with m outgoing edges and the

same set of edge labels. For situation si ∈ S (T ), let its associated data vector be given by

yi = (yi1, yi2, . . . , yim) where yi j represents the number of individuals in the random sample

that arrive at situation si and traverse its jth edge, for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Here

y = {y1, y2, . . . , yn} is the data vector and θθθ = {θθθ1, θθθ2, . . . , θθθn} is the parameter vector where

θθθi represents the conditional transition parameter vector for situation si. The model selec-

tion problem can be described as identifying the number and composition of the situation

clusters in T . This simplifies to fitting a standard finite mixture model as described by

Equation 7.1 in Stan for a fixed number of components or situation clusters. However, we

generally do not a priori know the number of situation clusters within a given event tree.

A brute force solution involves fitting the finite mixture model in Stan with the number

of components varying across all possible choices, i.e. from 1 to n for a total of n situa-
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tions. A simplified pseudo-code of the proposed model selection algorithm is presented in

Algorithm 5.

Algorithm 5: Mixture model selection algorithm for situation clusters
Input : Event tree T , data y, prior distribution for θθθi for 1 ≤ i ≤ n, prior

distribution for `̀̀.
Output: Optimal number of situation clusters, collection of situation

clusters, log marginal likelihood score of the conditional transition
parameters for the MAP CEG C found by the algorithm.

1 Set allocation← ∅.
2 Set parameters← ∅.
3 Set score← ∅.
4 for K from 1 to n do
5 Fit the model as described by Equation 7.1 in Stan with K components

and do the following:
6 Set allocationK as the composition of the K situation clusters given by

the posterior allocation of each situation to one of the K components.
7 allocation← allocation ∪ allocationK

8 Set parametersK as the parameters of the K situation clusters given by
the posterior estimates of the parameters of each of the K components.

9 parameters← parameters ∪ parametersK

10 Set scoreK as the log marginal likelihood of the model with K
components.

11 score← score ∪ scoreK

12 Set K(opt) = argmax score
13 return allocationK(opt), parametersK(opt), scoreK(opt)

For an event tree which is stratified or has a hypercluster defined over its situations,

the above algorithm can be run over each layer of the tree or each set within the hyperclus-

ter to identify the collection of situation clusters therein. While the above algorithm can

easily handle several hundreds of situations for a fixed number of components, it will be

significantly slowed down by fitting the mixture model for each possible number of com-

ponents. The run time of the algorithm can be reduced by providing it with a smaller range

of component numbers to explore.

In our preliminary experiments, we have found this algorithm to be very promis-

ing for situations with two emanating edges where the conditional transition parameter

vector for each situation follows a Binomial distribution. However, for the case where

a situation has three or more emanating edges, its conditional transition parameter vec-

tor follows a Multinomial distribution. Fitting a Multinomial finite mixture in Stan faces

well-documented label switching problems among the components which results in identi-

fiablility issues (Frühwirth-Schnatter, 2006; Mena & Walker, 2015).
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Identifying the edge clusters
Identifying the edge clusters in an event tree requires a modification to the standard

finite mixture modelling problem. Consider an event tree T with n edges which can all

potentially be in the same edge cluster. Let H(ei) be the conditional holding time random

variable along edge ei in T , for 1 ≤ i ≤ n. Let yi = {yi1, yi2, . . . , yini} where ni indicates

the number of individuals who traverse edge ei in our random sample and yi j represents

the observed holding time for the jth individual traversing this edge, for 1 ≤ i ≤ n and

1 ≤ j ≤ ni. Let y = {y1, y2, . . . , yn} be the data vector and θθθ = {θθθ1, θθθ2, . . . , θθθn} be the

parameter vector where θθθi denotes the parameters associated with the conditional holding

time distribution on edge ei. Similar to the situation clusters, the model selection problem

here can be described as identifying the number and composition of the edge clusters in T .

However, in this case, we fit the non-standard mixture model in Stan given as

p(y) =

n∏
i=1

K∑
k=1

`k p(yi | θk)

=

n∏
i=1

K∑
k=1

`k

ni∏
j=1

p(yi j | θk) (7.2)

for a fixed number of components or edge clusters K. The mixture model given by Equation

7.2 is non-standard because contrary to conventional mixture models, it does not imply that

each data observation (i.e. each observation of a holding time for any edge) independently

comes from one of the mixture components. Observe here that our model implies that

all the observed holding times in yi associated with edge ei necessarily belong to the same

component. In other words, all the observations in yi are assumed to be drawn from the same

distribution. Fortunately, fitting this model in Stan is straightforward. The pseudo-code for

this algorithm is identical to the pseudo-code in Algorithm 5 with the except that the model

to be fit in Stan is given by Equation 7.2. For an event tree with a hypercluster defined

over its edges, this algorithm can be run over each set within the hypercluster. Preliminary

experiments using two-parameter Weibull conditional holding time distributions where both

the shape and scale parameters are unknown show promising results.

7.2.2 CEG Software

One possible hindrance to the wider application of CEG methodologies might be the lack

of existing software. The popularity of the BN across a wide range of domains as a suc-

cessful modelling instrument within an applied modeller’s toolkit is influenced by the ex-

istence of several well-developed and regularly maintained software such as Netica, Weka,
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BARD, GeNIe, and Hugin, as well as packages such as bnlearn, bayespy, GOBNILP, and

BayeSuites. While there exist two R packages relevant to modelling with CEGs, namely

ceg and stagedtrees, neither include the functionality needed to model non-stratified CEGs.

The CEG applications in this thesis were modelled using code I wrote in Python

to support my methods. In its present form it supports modelling of non-stratified event

trees, non-stratified CEGs and CT-DCEGs with model selection using the AHC algorithm.

It also allows manual addition of edges with sampling zeros. The full development of

this Python package is in progress, including added functionality to support CEG and CT-

DCEG propagation algorithms, as well as model selection using the mixture methodology

described in Section 7.2.1.

7.3 Future Work

We briefly outline three avenues of future research below:

• As the number of events or variables within a process grows, its event tree also grows.

With this, we often face the issue of sparse edge counts where we observe very few

individuals within our sample traversing certain edges of the event tree. Barclay

(2014) provides a discussion of several possibilities of the criterion to determine that

the counts for an edge are “sparse”. Collazo and Smith (2016) has shown that the

AHC, under Dirichlet local priors, tends to merge stages with high edge counts with

those that have very low edge counts. This happens regardless of the true conditional

distributions for these stages. Collazo and Smith (2016) also showed that product

non-local priors generally do not face this issue. However, they are available in closed

form only under certain conditions and are more computationally expensive to cal-

culate. Another possible solution is to set an appropriate hyperstage structure that

keeps situations that have very low counts within singleton sets to prevent any poten-

tially spurious staging. However, this shifts the entire responsibility to the modeller

to decide what the threshold should be for determining what counts as sparse. Fur-

ther, this threshold would need to be calibrated to the application and the real-world

cost associated with obtaining a spurious staging. Hence, it would be useful to in-

vestigate further ways in which greedy algorithms can be combined with appropriate

prior settings (including product non-local priors) and score criteria to scale up model

selection in the presence of sparse edge counts.

• Within the BN family, DBNs employ a single time granularity to model the evolution

of a longitudinal process and alternatively, CTBNs model the evolution of a process

in continuous time. For several heterogeneous complex systems, both these model
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classes may fall short as DBNs may be insufficiently flexible to capture the dynamics

of the system over a single time granularity whereas the temporal detail modelled

by a CTBN may be too precise to match the available probabilistic knowledge. Liu

et al. (2017) proposed a solution in the form of a new class of models called the

hybrid time BN in which some variables evolve in discrete time over a fixed time

granularity while others are modelled in continuous time. Thus, the hybrid time

BN enables us to model complex systems with regularly and irregularly evolving

random variables. Similar to this class of BNs, the work presented in Chapter 5

can be extended to develop hybrid time DCEGs. While most of the methodologies

presented for CT-DCEGs should be directly transferable to this new model class, an

appropriate alternative representation (analogous to SMPs for CT-DCEGs) for such

hybrid time models would need to be explored.

• Finally, the last decade has seen rapid development of CEG technologies. CEGs have

now been shown to have a flexible framework for modelling processes with asymmet-

ric evolutions and asymmetric independence structures. There exist methodologies

to support parameter learning, model selection, inference and reasoning in CEGs and

its dynamic variants. While these methodologies have scope for improvement and for

further development, it is now essential that more real-world applications of CEGs are

explored. The literature thus far, including this thesis, present simulated case studies

and some limited use of real-world data in domains such as public health, medicine,

security and policing, reliability engineering, public services and education. The next

step should be to explore more applications of CEGs in these and other domains. Di-

rections for further methodological research are also likely to arise naturally through

the process of modelling with CEGs in diverse domains.
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Appendix A

Probability Distributions

The forms of the probability mass functions (pmf) or probability density functions (pdf) of

the probability distributions that feature in this thesis are provided below (in alphabetical

order) for reference.

Binomial distribution: The pmf of a random variable X that follows a Bino-

mial distribution Bin(n, p) with parameters n ∈ {0, 1, 2, . . .} denoting number of trials and

p ∈ [0, 1] denoting the probability of success of each trial is given as

p(X = x | n, p) =

(
n
x

)
px(1 − p)n−x, (A.1)

where
(
·

·

)
represents the Binomial coefficient. The support of X is {0, 1, . . . , n}.

Categorical distribution: The pmf of a random variable X that follows a Categor-

ical distribution Cat(p1, p2, . . . , pk) with parameters pi > 0 denoting the probability of the

random variable belonging to the ith category, for 1 ≤ i ≤ k is given by

p(X = i | p1, p2, . . . , pk) = pi, (A.2)

where
∑k

i=1 pi = 1. The support of X is {1, 2, . . . , k}.

Dirichlet distribution: The pdf of a set of random variables {X1, X2, . . . , Xn}, for

n ≥ 2, that follows a Dirichlet distribution Dir(α1, α2, . . . , αn) with concentration parame-

ters αi > 0 where 1 ≤ i ≤ n is given as

p(x1, x2, . . . , xn |α1, α2, . . . , αn) =
Γ(

∑n
i=1 αi)∏n

i=1 Γ(αi)

n∏
i=1

xαi−1
i , (A.3)
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where {xi}
n
i=1 belongs to an n − 1 dimensional simplex, i.e. xi ≥ 0 and

∑n
i=1 xi = 1. The

support of Xi is (0, 1).

Exponential distribution: The pdf of a random variable X that follows an Expo-

nential distribution Exp(λ) with rate parameter λ > 0 is given as

p(X = x | λ) = λ exp(−λx). (A.4)

The support of X is [0,∞).

Gamma distribution: The pdf of a random variable X that follows a Gamma dis-

tribution Gamma(α, β) with shape parameter α > 0 and rate parameter β > 0 is given as

p(X = x |α, β) =
βα

Γ(α)
xα−1 exp(−βx). (A.5)

The support of X is (0,∞).

Inverse-Gamma distribution: The pdf of a random variable X that follows an

Inverse-Gamma distribution IG(α, β) with shape parameter α > 0 and scale parameter β > 0

is given as

p(X = x |α, β) =
βα

Γ(α)
x−α−1 exp

(
−
β

x

)
. (A.6)

The support of X is (0,∞).

Multinomial distribution: The Multinomial distribution is a generalisation of the

Binomial distribution. It models the probability of counts for each of the k ≥ 2 possible

categories for n independent trials. The pmf of a set of random variables {X1, X2, . . . , Xk},

for k ≥ 2, that follow a Multinomial distribution Mult(p1, p2, . . . , pn) with parameter pi > 0

denoting the probability of a trial resulting in category i, for 1 ≤ i ≤ k, is given by

p(x1, x2, . . . , xn | p1, p2, . . . , pk) =
n!

x1!x2! . . . xk!

k∏
i=1

pxi
i , (A.7)

where
∑k

i=1 xi = n and
∑k

i=1 pi = 1. Here random variable Xi indicates the number of times

the category i is the outcome in all the n trials. The support of Xi is {1, 2, . . . , n}.

Poisson distribution: The pmf of a random variable X that follows a Poisson dis-
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tribution Poi(λ) with rate parameter λ > 0 is given as

p(X = x | λ) =
λx exp(−λ)

x!
. (A.8)

The support of X is {0, 1, 2, . . .}.

Weibull distribution: The pdf of a random variable X that follows a Weibull dis-

tribution Wei(κ, λ) with shape parameter κ > 0 and scale parameter λ > 0 is given as

p(X = x | λ) =
κ

λ
xκ−1 exp

(
−

xκ

λ

)
. (A.9)

The support of X is [0,∞).
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Appendix B

Infinite Tree Probability Measure

Theorem B.1. A probability measure can be defined on the atoms of the event space gen-

erated by an infinite event tree.

Proof. Consider an infinite event tree T = (V(T ), E(T )). For two event trees T1,T2 rooted

at the same vertex v write T1 � T2 if T1 is a subtree of T2. Say T1 is a minimal coarsening

of T2 if T1 can be constructed from T2 by deleting exactly one floret. An infinite event tree

can thus be constructed from a finite event tree by sequentially adding florets.

Let event tree T , (T1,T2, . . .), where T j � T j+1, such that each T j is finite and T j

is a minimal coarsening of T j+1, j ∈ N. For each tree T j we can define a probability space

given by (Ω j,F j,P j).

For any tree T ′ with probability space (Ω′,F ′,P′), each path λ ∈ T ′
Λ

represents a

possible outcome trajectory of the process modelled by T ′. Thus Ω′ corresponds to T ′
Λ

and

F ′ is the σ-algebra defined over Ω′.

The sample space Ω of T can then be written as an infinite product space given by

Ω B Ω1 × Ω2 × . . ., which has a product σ-algebra F . As this product is countable, the

σ-algebra F is generated by cylinder sets given by

C = {(ω1, ω2, . . .) ∈ Ω : ω1 ∈ A1, ω2 ∈ A2, . . . , ωk ∈ Ak},

for some k ∈ N and Ai ⊆ Fi for 1 ≤ i ≤ k. Each cylinder set describes an outcome trajectory

for an individual from the root up to k transitions. The subsequent evolution of the outcome

trajectory can be arbitrary. Each outcome trajectory then has an associated probability

(trivially each root-to-leaf path of this finite tree can be assigned an equal probability). The

probability of the cylinder set C is then given by

PC = P1(A1) × . . . × Pk(Ak).
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Note that the collection of finite unions of these cylinder sets forms an algebra F0. Thus

F is the σ-algebra generated by F0.

Given the probability spaces (Ω j,F j,P j), j ∈ N, for a finite subset I of N, let the

product measure on ΩI be denoted by PI . All (Ω j,F j), j ∈ N are Borel spaces and the

sequence of probability measures PI , I ⊂ N is a consistent family of finite-dimensional

distributions by the construction given above. Then by Kolmogorov’s Extension theorem

there exists a unique probability measure P on the infinite product space Ω that agrees with

the measures PI on ΩI , I ⊂ N. �
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